
� � � � � � � � � � �

Match PuzzleE X A M P L E 1

MilkE X A M P L E 2

†This section covers topics that may be omitted with no loss of continuity.

Deterministic Dynamic Programming

Dynamic programming is a technique that can be used to solve many optimization problems.
In most applications, dynamic programming obtains solutions by working backward from the
end of a problem toward the beginning, thus breaking up a large, unwieldy problem into a
series of smaller, more tractable problems.

We introduce the idea of working backward by solving two well-known puzzles and then
show how dynamic programming can be used to solve network, inventory, and resource-
allocation problems. We close the chapter by showing how to use spreadsheets to solve
dynamic programming problems.

18.1 Two Puzzles†

In this section, we show how working backward can make a seemingly difficult problem
almost trivial to solve.

Suppose there are 30 matches on a table. I begin by picking up 1, 2, or 3 matches. Then
my opponent must pick up 1, 2, or 3 matches. We continue in this fashion until the last
match is picked up. The player who picks up the last match is the loser. How can I (the
first player) be sure of winning the game?

Solution If I can ensure that it will be my opponent’s turn when 1 match remains, I will certainly win.
Working backward one step, if I can ensure that it will be my opponent’s turn when 5 matches
remain, I will win. The reason for this is that no matter what he does when 5 matches re-
main, I can make sure that when he has his next turn, only 1 match will remain. For exam-
ple, suppose it is my opponent’s turn when 5 matches remain. If my opponent picks up 2
matches, I will pick up 2 matches, leaving him with 1 match and sure defeat. Similarly, if I
can force my opponent to play when 5, 9, 13, 17, 21, 25, or 29 matches remain, I am sure
of victory. Thus, I cannot lose if I pick up 30 � 29 � 1 match on my first turn. Then I sim-
ply make sure that my opponent will always be left with 29, 25, 21, 17, 13, 9, or 5 matches
on his turn. Notice that we have solved this puzzle by working backward from the end of the
problem toward the beginning. Try solving this problem without working backward!

I have a 9-oz cup and a 4-oz cup. My mother has ordered me to bring home exactly 6 oz
of milk. How can I accomplish this goal?

962 C H A P T E R 1 8 Deterministic Dynamic Programming

Solution By starting near the end of the problem, I cleverly realize that the problem can easily be
solved if I can somehow get 1 oz of milk into the 4-oz cup. Then I can fill the 9-oz cup
and empty 3 oz from the 9-oz cup into the partially filled 4-oz cup. At this point, I will
be left with 6 oz of milk. After I have this flash of insight, the solution to the problem
may easily be described as in Table 1 (the initial situation is written last, and the final sit-
uation is written first).

P R O B L E M S
Group A

1 Suppose there are 40 matches on a table. I begin by
picking up 1, 2, 3, or 4 matches. Then my opponent must
pick up 1, 2, 3, or 4 matches. We continue until the last
match is picked up. The player who picks up the last match
is the loser. Can I be sure of victory? If so, how?

2 Three players have played three rounds of a gambling
game. Each round has one loser and two winners. The losing
player must pay each winner the amount of money that the
winning player had at the beginning of the round. At the end
of the three rounds each player has $10. You are told that
each player has won one round. By working backward,
determine the original stakes of the three players. [Note: If
the answer turns out to be (for example) 5, 15, 10, don’t
worry about which player had which stake; we can’t really
tell which player ends up with how much, but we can
determine the numerical values of the original stakes.]

Group B

3 We have 21 coins and are told that one is heavier than
any of the other coins. How many weighings on a balance
will it take to find the heaviest coin? (Hint: If the heaviest
coin is in a group of three coins, we can find it in one
weighing. Then work backward to two weighings, and
so on.)

4 Given a 7-oz cup and a 3-oz cup, explain how we can
return from a well with 5 oz of water.

18.2 A Network Problem
Many applications of dynamic programming reduce to finding the shortest (or longest) path
that joins two points in a given network. The following example illustrates how dynamic
programming (working backward) can be used to find the shortest path in a network.

TA B L E 1
Moves in the Cup-and-Milk Problem

No. of Ounces No. of Ounces
in 9-oz Cup in 4-oz Cup

6 0
6 4
9 1
0 1
1 0
1 4
5 0
5 4
9 0
0 0

1 8 . 2 A Network Problem 963

Joe Cougar lives in New York City, but he plans to drive to Los Angeles to seek fame and
fortune. Joe’s funds are limited, so he has decided to spend each night on his trip at a
friend’s house. Joe has friends in Columbus, Nashville, Louisville, Kansas City, Omaha,
Dallas, San Antonio, and Denver. Joe knows that after one day’s drive he can reach
Columbus, Nashville, or Louisville. After two days of driving, he can reach Kansas City,
Omaha, or Dallas. After three days of driving, he can reach San Antonio or Denver. Fi-
nally, after four days of driving, he can reach Los Angeles. To minimize the number of
miles traveled, where should Joe spend each night of the trip? The actual road mileages
between cities are given in Figure 1.

Solution Joe needs to know the shortest path between New York and Los Angeles in Figure 1. We
will find it by working backward. We have classified all the cities that Joe can be in at the
beginning of the nth day of his trip as stage n cities. For example, because Joe can only
be in San Antonio or Denver at the beginning of the fourth day (day 1 begins when Joe
leaves New York), we classify San Antonio and Denver as stage 4 cities. The reason for
classifying cities according to stages will become apparent later.

The idea of working backward implies that we should begin by solving an easy prob-
lem that will eventually help us to solve a complex problem. Hence, we begin by finding
the shortest path to Los Angeles from each city in which there is only one day of driving
left (stage 4 cities). Then we use this information to find the shortest path to Los Ange-
les from each city for which only two days of driving remain (stage 3 cities). With this
information in hand, we are able to find the shortest path to Los Angeles from each city
that is three days distant (stage 2 cities). Finally, we find the shortest path to Los Ange-
les from each city (there is only one: New York) that is four days away.

To simplify the exposition, we use the numbers 1, 2, . . . , 10 given in Figure 1 to la-
bel the 10 cities. We also define cij to be the road mileage between city i and city j. For
example, c35 � 580 is the road mileage between Nashville and Kansas City. We let ft(i)
be the length of the shortest path from city i to Los Angeles, given that city i is a stage t
city.†

Stage 4 Computations

We first determine the shortest path to Los Angeles from each stage 4 city. Since there is
only one path from each stage 4 city to Los Angeles, we immediately see that f4(8) �
1,030, the shortest path from Denver to Los Angeles simply being the only path from Den-
ver to Los Angeles. Similarly, f4(9) � 1,390, the shortest (and only) path from San An-
tonio to Los Angeles.

Stage 3 Computations

We now work backward one stage (to stage 3 cities) and find the shortest path to Los An-
geles from each stage 3 city. For example, to determine f3(5), we note that the shortest
path from city 5 to Los Angeles must be one of the following:

Path 1 Go from city 5 to city 8 and then take the shortest path from city 8 to city 10.

Path 2 Go from city 5 to city 9 and then take the shortest path from city 9 to city 10.

The length of path 1 may be written as c58 � f4(8), and the length of path 2 may be writ-
ten as c59 � f4(9). Hence, the shortest distance from city 5 to city 10 may be written as

Shortest PathE X A M P L E 3

†In this example, keeping track of the stages is unnecessary; to be consistent with later examples, however,
we do keep track.

964 C H A P T E R 1 8 Deterministic Dynamic Programming

f3(5) � min {c58 � f4(8) � 610 � 1,030 � 1,640*

c59 � f4(9) � 790 � 1,390 � 2,180

[the * indicates the choice of arc that attains the f3(5)]. Thus, we have shown that the
shortest path from city 5 to city 10 is the path 5–8–10. Note that to obtain this result, we
made use of our knowledge of f4(8) and f4(9).

Similarly, to find f3(6), we note that the shortest path to Los Angeles from city 6 must
begin by going to city 8 or to city 9. This leads us to the following equation:

f3(6) � min {c68 � f4(8) � 540 � 1,030 � 1,570*

c69 � f4(9) � 940 � 1,390 � 2,330

Thus, f3(6) � 1,570, and the shortest path from city 6 to city 10 is the path 6–8–10.
To find f3(7), we note that

f3(7) � min {c78 � f4(8) � 790 � 1,030 � 1,820

c79 � f4(9) � 270 � 1,390 � 1,660*

Therefore, f3(7) � 1,660, and the shortest path from city 7 to city 10 is the path 7–9–10.

Stage 2 Computations

Given our knowledge of f3(5), f3(6), and f3(7), it is now easy to work backward one more
stage and compute f2(2), f2(3), and f2(4) and thus the shortest paths to Los Angeles from
city 2, city 3, and city 4. To illustrate how this is done, we find the shortest path (and its
length) from city 2 to city 10. The shortest path from city 2 to city 10 must begin by go-
ing from city 2 to city 5, city 6, or city 7. Once this shortest path gets to city 5, city 6, or
city 7, then it must follow a shortest path from that city to Los Angeles. This reasoning
shows that the shortest path from city 2 to city 10 must be one of the following:

Path 1 Go from city 2 to city 5. Then follow a shortest path from city 5 to city 10. A
path of this type has a total length of c25 � f3(5).

Los Angeles
10

Denver
8

San Antonio
9

Kansas City
5

Columbus
2

550

680

580 610

790

7901,050

790 540

900 760

660

510

700

830

270

940 1,390

770

Stage 1 Stage 5

Stage 2 Stage 3

Stage 4

1,030

Omaha
6

Nashville
3

Dallas
7

Louisville
4

New York
1

F I G U R E 1
Joe’s Trip Across the

United States

Path 2 Go from city 2 to city 6. Then follow a shortest path from city 6 to city 10. A
path of this type has a total length of c26 � f3(6).

Path 3 Go from city 2 to city 7. Then follow a shortest path from city 7 to city 10. This
path has a total length of c27 � f3(7). We may now conclude that

c25 � f3(5) � 680 � 1,640 � 2,320*

f2(2) � min �c26 � f3(6) � 790 � 1,570 � 2,360

c27 � f3(7) � 1,050 � 1,660 � 2,710

Thus, f2(2) � 2,320, and the shortest path from city 2 to city 10 is to go from city 2 to
city 5 and then follow the shortest path from city 5 to city 10 (5–8–10).

Similarly,

c35 � f3(5) � 580 � 1,640 � 2,220*

f2(3) � min �c36 � f3(6) � 760 � 1,570 � 2,330

c37 � f3(7) � 660 � 1,660 � 2,320

Thus, f2(3) � 2,220, and the shortest path from city 3 to city 10 consists of arc 3–5 and
the shortest path from city 5 to city 10 (5–8–10).

In similar fashion,

c45 � f3(5) � 510 � 1,640 � 2,150*

f2(4) � min �c46 � f3(6) � 700 � 1,570 � 2,270

c47 � f3(7) � 830 � 1,660 � 2,490

Thus, f2(4) � 2,150, and the shortest path from city 4 to city 10 consists of arc 4–5 and
the shortest path from city 5 to city 10 (5–8–10).

Stage 1 Computations

We can now use our knowledge of f2(2), f2(3), and f2(4) to work backward one more stage
to find f1(1) and the shortest path from city 1 to city 10. Note that the shortest path from
city 1 to city 10 must begin by going to city 2, city 3, or city 4. This means that the short-
est path from city 1 to city 10 must be one of the following:

Path 1 Go from city 1 to city 2 and then follow a shortest path from city 2 to city 10.
The length of such a path is c12 � f2(2).

Path 2 Go from city 1 to city 3 and then follow a shortest path from city 3 to city 10.
The length of such a path is c13 � f2(3).

Path 3 Go from city 1 to city 4 and then follow a shortest path from city 4 to city 10.
The length of such a path is c14 � f2(4). It now follows that

c12 � f2(2) � 550 � 2,320 � 2,870*

f1(1) � min �c13 � f2(3) � 900 � 2,220 � 3,120

c14 � f2(4) � 770 � 2,150 � 2,920

Determination of the Optimal Path

Thus, f1(1) � 2,870, and the shortest path from city 1 to city 10 goes from city 1 to city
2 and then follows the shortest path from city 2 to city 10. Checking back to the f2(2) cal-
culations, we see that the shortest path from city 2 to city 10 is 2–5–8–10. Translating the
numerical labels into real cities, we see that the shortest path from New York to Los An-

1 8 . 2 A Network Problem 965

966 C H A P T E R 1 8 Deterministic Dynamic Programming

geles passes through New York, Columbus, Kansas City, Denver, and Los Angeles. This
path has a length of f1(1) � 2,870 miles.

Computational Efficiency of Dynamic Programming

For Example 3, it would have been an easy matter to determine the shortest path from
New York to Los Angeles by enumerating all the possible paths [after all, there are only
3(3)(2) � 18 paths]. Thus, in this problem, the use of dynamic programming did not re-
ally serve much purpose. For larger networks, however, dynamic programming is much
more efficient for determining a shortest path than the explicit enumeration of all paths.
To see this, consider the network in Figure 2. In this network, it is possible to travel from
any node in stage k to any node in stage k � 1. Let the distance between node i and node
j be cij. Suppose we want to determine the shortest path from node 1 to node 27. One way
to solve this problem is explicit enumeration of all paths. There are 55 possible paths from
node 1 to node 27. It takes five additions to determine the length of each path. Thus, ex-
plicitly enumerating the length of all paths requires 55(5) � 56 � 15,625 additions.

Suppose we use dynamic programming to determine the shortest path from node 1 to
node 27. Let ft(i) be the length of the shortest path from node i to node 27, given that
node i is in stage t. To determine the shortest path from node 1 to node 27, we begin by
finding f6(22), f6(23), f6(24), f6(25), and f6(26). This does not require any additions. Then
we find f5(17), f5(18), f5(19), f5(20), f5(21). For example, to find f5(21) we use the fol-
lowing equation:

f5(21) � min
j

{c21, j � f6(j)} (j � 22, 23, 24, 25, 26)

Determining f5(21) in this manner requires five additions. Thus, the calculation of all the
f5(�)’s requires 5(5) � 25 additions. Similarly, the calculation of all the f4(�)’s requires 25
additions, and the calculation of all the f3(�)’s requires 25 additions. The determination of
all the f2(�)’s also requires 25 additions, and the determination of f1(1) requires 5 addi-
tions. Thus, in total, dynamic programming requires 4(25) � 5 � 105 additions to find

27

Stage 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Stage 1

Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

F I G U R E 2
Illustration of

Computational Efficiency
of Dynamic

Programming

1 8 . 2 A Network Problem 967

the shortest path from node 1 to node 27. Because explicit enumeration requires 15,625
additions, we see that dynamic programming requires only 0.007 times as many additions
as explicit enumeration. For larger networks, the computational savings effected by dy-
namic programming are even more dramatic.

Besides additions, determination of the shortest path in a network requires compar-
isons between the lengths of paths. If explicit enumeration is used, then 55 � 1 � 3,124
comparisons must be made (that is, compare the length of the first two paths, then com-
pare the length of the third path with the shortest of the first two paths, and so on). If dy-
namic programming is used, then for t � 2, 3, 4, 5, determination of each ft(i) requires
5 � 1 � 4 comparisons. Then to compute f1(1), 5 � 1 � 4 comparisons are required.
Thus, to find the shortest path from node 1 to node 27, dynamic programming requires a
total of 20(5 � 1) � 4 � 84 comparisons. Again, dynamic programming comes out far
superior to explicit enumeration.

Characteristics of Dynamic Programming Applications

We close this section with a discussion of the characteristics of Example 3 that are com-
mon to most applications of dynamic programming.

Characteristic 1

The problem can be divided into stages with a decision required at each stage. In Exam-
ple 3, stage t consisted of those cities where Joe could be at the beginning of day t of his
trip. As we will see, in many dynamic programming problems, the stage is the amount of
time that has elapsed since the beginning of the problem. We note that in some situations,
decisions are not required at every stage (see Section 18.5).

Characteristic 2

Each stage has a number of states associated with it. By a state, we mean the informa-
tion that is needed at any stage to make an optimal decision. In Example 3, the state at
stage t is simply the city where Joe is at the beginning of day t. For example, in stage 3,
the possible states are Kansas City, Omaha, and Dallas. Note that to make the correct de-
cision at any stage, Joe doesn’t need to know how he got to his current location. For ex-
ample, if Joe is in Kansas City, then his remaining decisions don’t depend on how he goes
to Kansas City; his future decisions just depend on the fact that he is now in Kansas City.

Characteristic 3

The decision chosen at any stage describes how the state at the current stage is trans-
formed into the state at the next stage. In Example 3, Joe’s decision at any stage is sim-
ply the next city to visit. This determines the state at the next stage in an obvious fash-
ion. In many problems, however, a decision does not determine the next stage’s state with
certainty; instead, the current decision only determines the probability distribution of the
state at the next stage.

Characteristic 4

Given the current state, the optimal decision for each of the remaining stages must not
depend on previously reached states or previously chosen decisions. This idea is known
as the principle of optimality. In the context of Example 3, the principle of optimality

968 C H A P T E R 1 8 Deterministic Dynamic Programming

reduces to the following: Suppose the shortest path (call it R) from city 1 to city 10 is
known to pass through city i. Then the portion of R that goes from city i to city 10 must
be a shortest path from city i to city 10. If this were not the case, then we could create a
path from city 1 to city 10 that was shorter than R by appending a shortest path from city
i to city 10 to the portion of R leading from city 1 to city i. This would create a path from
city 1 to city 10 that is shorter than R, thereby contradicting the fact that R is a shortest
path from city 1 to city 10. For example, if the shortest path from city 1 to city 10 is
known to pass through city 2, then the shortest path from city 1 to city 10 must include
a shortest path from city 2 to city 10 (2–5–8–10). This follows because any path from city
1 to city 10 that passes through city 2 and does not contain a shortest path from city 2 to
city 10 will have a length of c12 � [something bigger than f2(2)]. Of course, such a path
cannot be a shortest path from city 1 to city 10.

Characteristic 5

If the states for the problem have been classified into one of T stages, there must be a re-
cursion that relates the cost or reward earned during stages t, t � 1, . . . , T to the cost
or reward earned from stages t � 1, t � 2, . . . , T. In essence, the recursion formalizes
the working-backward procedure. In Example 3, our recursion could have been written as

ft(i) � min
j

{cij � ft�1(j)}

where j must be a stage t � 1 city and f5(10) � 0.
We can now describe how to make optimal decisions. Let’s assume that the initial state

during stage 1 is i1. To use the recursion, we begin by finding the optimal decision for
each state associated with the last stage. Then we use the recursion described in charac-
teristic 5 to determine fT�1(�) (along with the optimal decision) for every stage T � 1
state. Then we use the recursion to determine fT�2(�) (along with the optimal decision)
for every stage T � 2 state. We continue in this fashion until we have computed f1(i1) and
the optimal decision when we are in stage 1 and state i1. Then our optimal decision in
stage 1 is chosen from the set of decisions attaining f1(i1). Choosing this decision at stage
1 will lead us to some stage 2 state (call it state i2) at stage 2. Then at stage 2, we choose
any decision attaining f2(i2). We continue in this fashion until a decision has been chosen
for each stage.

In the rest of this chapter, we discuss many applications of dynamic programming. The
presentation will seem easier if the reader attempts to determine how each problem fits
into the network context introduced in Example 3. In the next section, we begin by study-
ing how dynamic programming can be used to solve inventory problems.

P R O B L E M S
Group A

1 Find the shortest path from node 1 to node 10 in the
network shown in Figure 3. Also, find the shortest path from
node 3 to node 10.

2 A sales representative lives in Bloomington and must be
in Indianapolis next Thursday. On each of the days Monday,
Tuesday, and Wednesday, he can sell his wares in Indianapolis,
Bloomington, or Chicago. From past experience, he believes
that he can earn $12 from spending a day in Indianapolis, $16
from spending a day in Bloomington, and $17 from spending
a day in Chicago. Where should he spend the first three days

2

2

7

4

6

3

4

4

5

3

3

3

3

1

3

6

1

24

4
3

31 10

4

5

6

8

9

7

F I G U R E 3

1 8 . 3 An Inventory Problem 969

and nights of the week to maximize his sales income less
travel costs? Travel costs are shown in Table 2.

Group B

3 I must drive from Bloomington to Cleveland. Several
paths are available (see Figure 4). The number on each arc
is the length of time it takes to drive between the two cities.
For example, it takes 3 hours to drive from Bloomington to

Cincinnati. By working backward, determine the shortest
path (in terms of time) from Bloomington to Cleveland.
[Hint: Work backward and don’t worry about stages—only
about states.]

18.3 An Inventory Problem
In this section, we illustrate how dynamic programming can be used to solve an inven-
tory problem with the following characteristics:

1 Time is broken up into periods, the present period being period 1, the next period 2,
and the final period T. At the beginning of period 1, the demand during each period is
known.

2 At the beginning of each period, the firm must determine how many units should be
produced. Production capacity during each period is limited.

3 Each period’s demand must be met on time from inventory or current production. Dur-
ing any period in which production takes place, a fixed cost of production as well as a
variable per-unit cost is incurred.

4 The firm has limited storage capacity. This is reflected by a limit on end-of-period in-
ventory. A per-unit holding cost is incurred on each period’s ending inventory.

5 The firm’s goal is to minimize the total cost of meeting on time the demands for pe-
riods 1, 2, . . . , T.

In this model, the firm’s inventory position is reviewed at the end of each period (say,
at the end of each month), and then the production decision is made. Such a model is
called a periodic review model. This model is in contrast to the continuous review mod-
els in which the firm knows its inventory position at all times and may place an order or
begin production at any time.

If we exclude the setup cost for producing any units, the inventory problem just de-
scribed is similar to the Sailco inventory problem that we solved by linear programming
in Section 3.10. Here, we illustrate how dynamic programming can be used to determine
a production schedule that minimizes the total cost incurred in an inventory problem that
meets the preceding description.

TA B L E 2

To

From Indianapolis Bloomington Chicago

Indianapolis — 5 2
Bloomington 5 — 7
Chicago 2 7 —

3 hours

3 hours

3 hours

2 hours

2 hours
1
2

2 hours 3 hours

1 hour

1 hour

2 hours

3 hours
Gary

Indianapolis

Bloomington

Toledo

Dayton

Cleveland

Columbus

Cincinnati

F I G U R E 4

970 C H A P T E R 1 8 Deterministic Dynamic Programming

A company knows that the demand for its product during each of the next four months
will be as follows: month 1, 1 unit; month 2, 3 units; month 3, 2 units; month 4, 4 units.
At the beginning of each month, the company must determine how many units should be
produced during the current month. During a month in which any units are produced, a
setup cost of $3 is incurred. In addition, there is a variable cost of $1 for every unit pro-
duced. At the end of each month, a holding cost of 50¢ per unit on hand is incurred. Ca-
pacity limitations allow a maximum of 5 units to be produced during each month. The
size of the company’s warehouse restricts the ending inventory for each month to 4 units
at most. The company wants to determine a production schedule that will meet all de-
mands on time and will minimize the sum of production and holding costs during the four
months. Assume that 0 units are on hand at the beginning of the first month.

Solution Recall from Section 3.10 that we can ensure that all demands are met on time by re-
stricting each month’s ending inventory to be nonnegative. To use dynamic programming
to solve this problem, we need to identify the appropriate state, stage, and decision. The
stage should be defined so that when one stage remains, the problem will be trivial to
solve. If we are at the beginning of month 4, then the firm would meet demand at mini-
mum cost by simply producing just enough units to ensure that (month 4 production) �
(month 3 ending inventory) � (month 4 demand). Thus, when one month remains, the
firm’s problem is easy to solve. Hence, we let time represent the stage. In most dynamic
programming problems, the stage has something to do with time.

At each stage (or month), the company must decide how many units to produce. To
make this decision, the company need only know the inventory level at the beginning of
the current month (or the end of the previous month). Therefore, we let the state at any
stage be the beginning inventory level.

Before writing a recursive relation that can be used to “build up” the optimal produc-
tion schedule, we must define ft(i) to be the minimum cost of meeting demands for months
t, t � 1, . . . , 4 if i units are on hand at the beginning of month t. We define c(x) to be the
cost of producing x units during a period. Then c(0) � 0, and for x � 0, c(x) � 3 � x.
Because of the limited storage capacity and the fact that all demand must be met on time,
the possible states during each period are 0, 1, 2, 3, and 4. Thus, we begin by determin-
ing f4(0), f4(1), f4(2), f4(3), and f4(4). Then we use this information to determine f3(0),
f3(1), f3(2), f3(3), and f3(4). Then we determine f2(0), f2(1), f2(2), f2(3), and f2(4). Finally,
we determine f1(0). Then we determine an optimal production level for each month. We
define xt(i) to be a production level during month t that minimizes the total cost during
months t, t � 1, . . . , 4 if i units are on hand at the beginning of month t. We now begin
to work backward.

Month 4 Computations

During month 4, the firm will produce just enough units to ensure that the month 4 de-
mand of 4 units is met. This yields

f4(0) � cost of producing 4 � 0 units � c(4) � 3 � 4 � $7 and x4(0) � 4 � 0 � 4

f4(1) � cost of producing 4 � 1 units � c(3) � 3 � 3 � $6 and x4(1) � 4 � 1 � 3

f4(2) � cost of producing 4 � 2 units � c(2) � 3 � 2 � $5 and x4(2) � 4 � 2 � 2

f4(3) � cost of producing 4 � 3 units � c(1) � 3 � 1 � $4 and x4(3) � 4 � 3 � 1

f4(4) � cost of producing 4 � 4 units � c(0) � $0 and x4(4) � 4 � 4 � 0

InventoryE X A M P L E 4

1 8 . 3 An Inventory Problem 971

Month 3 Computations

How can we now determine f3(i) for i � 0, 1, 2, 3, 4? The cost f3(i) is the minimum cost
incurred during months 3 and 4 if the inventory at the beginning of month 3 is i. For each
possible production level x during month 3, the total cost during months 3 and 4 is

(�
1
2

�)(i � x � 2) � c(x) � f4(i � x � 2) (1)

This follows because if x units are produced during month 3, the ending inventory for
month 3 will be i � x � 2. Then the month 3 holding cost will be (�

1
2

�)(i � x � 2), and
the month 3 production cost will be c(x). Then we enter month 4 with i � x � 2 units on
hand. Since we proceed optimally from this point onward (remember the principle of op-
timality), the cost for month 4 will be f4(i � x � 2). We want to choose the month 3 pro-
duction level to minimize (1), so we write

f3(i) � min
x

{(�
1
2

�)(i � x � 2) � c(x) � f4(i � x � 2)} (2)

In (2), x must be a member of {0, 1, 2, 3, 4, 5}, and x must satisfy 4 � i � x � 2 � 0. This
reflects the fact that the current month’s demand must be met (i � x � 2 � 0), and ending
inventory cannot exceed the capacity of 4(i � x � 2 	 4). Recall that x3(i) is any value of
x attaining f3(i). The computations for f3(0), f3(1), f3(2), f3(3), and f3(4) are given in Table 3.

Month 2 Computations

We can now determine f2(i), the minimum cost incurred during months 2, 3, and 4 given
that at the beginning of month 2, the on-hand inventory is i units. Suppose that month 2
production � x. Because month 2 demand is 3 units, a holding cost of (�

1
2

�)(i � x � 3) is

TA B L E 3
Computations for f3(i)

Total Cost f3(i)
i x (�

1
2

�)(i � x � 2) �c (x) f4(i � x � 2) Months 3, 4 x3(i)

0 2 0 � 5 � 5 7 5 � 7 � 12* f3(0) � 12
0 3 ��

1
2

� � 6 � �
1
2
3
� 6 �

1
2
3
� � 6 � �

2
2
5
� x3(0) � 2

0 4 1 � 7 � 8 5 8 � 5 � 13
0 5 �

3
2

� � 8 � �
1
2
9
� 4 �

1
2
9
� � 4 � �

2
2
7
�

1 1 0 � 4 � 4 7 4 � 7 � 11 f3(1) � 10
1 2 ��

1
2

� � 5 � �
1
2
1
� 6 �

1
2
1
� � 6 � �

2
2
3
� x3(1) � 5

1 3 1 � 6 � 7 5 7 � 5 � 12
1 4 �

3
2

� � 7 � �
1
2
7
� 4 �

1
2
7
� � 4 � �

2
2
5
�

1 5 2 � 8 � 10 0 10 � 0 � 10*
2 0 0 � 0 � 0 7 0 � 7 � 7* f3(2) � 7
2 1 �

1
2

� � 4 � �
9
2

� 6 �
9
2

� � 6 � �
2
2
1
� x3(2) � 0

2 2 1 � 5 � 6 5 6 � 5 � 11
2 3 �

3
2

� � 6 � �
1
2
5
� 4 �

1
2
5
� � 4 � �

2
2
3
�

2 4 2 � 7 � 9 0 9 � 0 � 9
3 0 �

1
2

� � 0 � �
1
2

� 6 �
1
2

� � 6 � �
1
2
3
�* f3(3) � �

1
2
3
�

3 1 1 � 4 � 5 5 5 � 5 � 10 x3(3) � 0
3 2 �

3
2

� � 5 � �
1
2
3
� 4 �

1
2
3
� � 4 � �

2
2
1
�

3 3 2 � 6 � 8 0 8 � 0 � 8
4 0 1 � 0 � 1 5 1 � 5 � 6* f3(4) � 6
4 1 �

3
2

� � 4 � �
1
2
1
� 4 �

1
2
1
� � 4 � �

1
2
9
� x3(4) � 0

4 2 2 � 5 � 7 0 7 � 0 � 7

972 C H A P T E R 1 8 Deterministic Dynamic Programming

incurred at the end of month 2. Thus, the total cost incurred during month 2 is (�
1
2

�)(i �
x � 3) � c(x). During months 3 and 4, we follow an optimal policy. Since month 3 be-
gins with an inventory of i � x � 3, the cost incurred during months 3 and 4 is f3(i �
x � 3). In analogy to (2), we now write

f2(i) � min
x

{(�
1
2

�)(i � x � 3) � c(x) � f3(i � x � 3)} (3)

where x must be a member of {0, 1, 2, 3, 4, 5} and x must also satisfy 0 	 i � x � 3 	
4. The computations for f2(0), f2(1), f2(2), f2(3), and f2(4) are given in Table 4.

Month 1 Computations

The reader should now be able to show that the f1(i)’s can be determined via the follow-
ing recursive relation:

f1(i) � min
x

{(�
1
2

�)(i � x � 1) � c(x) � f2(i � x � 1)} (4)

where x must be a member of {0, 1, 2, 3, 4, 5} and x must satisfy 0 	 i � x � 1 	 4.
Since the inventory at the beginning of month 1 is 0 units, we actually need only deter-
mine f1(0) and x1(0). To give the reader more practice, however, the computations for
f1(1), f1(2), f1(3), and f1(4) are given in Table 5.

Determination of the Optimal Production Schedule

We can now determine a production schedule that minimizes the total cost of meeting the
demand for all four months on time. Since our initial inventory is 0 units, the minimum
cost for the four months will be f1(0) � $20. To attain f1(0), we must produce x1(0) � 1

TA B L E 4
Computations for f2(i)

Total Cost f2(i)
i x (�

1
2

�)(i � x � 3) �c (x) f3(i � x � 3) Months 2–4 x2(i)

0 3 0 � 6 � 6 12 6 � 12 � 18 f2(0) � 16
0 4 ��

1
2

� � 7 � �
1
2
5
� 10 ��

1
2
5
� � 10 � �

3
2
5
� x2(0) � 5

0 5 1 � 8 � 9 17 9 � 7 � 16*
1 2 0 � 5 � 5 12 5 � 12 � 17 f2(1) � 15
1 3 ��

1
2

� � 6 � �
1
2
3
� 10 �

1
2
3
� � 10 � �

3
2
3
� x2(1) � 4

1 4 1 � 7 � 8 17 8 � 7 � 15*
1 5 �

3
2

� � 8 � �
1
2
9
� �

1
2
3
� �

1
2
9
� � �

1
2
3
� � 16

2 1 0 � 4 � 4 12 4 � 12 � 16 f2(2) � 14
2 2 ��

1
2

� � 5 � �
1
2
1
� 10 �

1
2
1
� � 10 � �

3
2
1
�* x2(2) � 3

2 3 1 � 6 � 7 17 7 � 7 � 14*
2 4 �

3
2

� � 7 � �
1
2
7
� �

1
2
3
� �

1
2
7
� � �

1
2
3
� � 15

2 5 2 � 8 � 10 16 10� 6 � 16
3 0 0 � 0 � 0 12 0 � 12 � 12* f2(3) � 12
3 1 ��

1
2

� � 4 � �
9
2

� 10 �
9
2

� � 10 � �
2
2
9
� x2(3) � 0

3 2 1 � 5 � 6 17 6 � 7 � 13
3 3 �

3
2

� � 6 � �
1
2
5
� �

1
2
3
� �

1
2
5
� � �

1
2
3
� � 14

3 4 2 � 7 � 9 16 9 � 6 � 15
4 0 ��

1
2

� � 0 � ��
1
2

� 10 ���
1
2

� � 10 � �
2
2
1
�* f2(4) � �

2
2
1
�

4 1 1 � 4 � 5 17 5 � 7 � 12 x2(4) � 0
4 2 �

3
2

� � 5 � �
1
2
3
� �

1
2
3
� �

1
2
3
� � �

1
2
3
� � 13

4 3 2 � 6 � 8 6 8 � 6 � 14

1 8 . 3 An Inventory Problem 973

unit during month 1. Then the inventory at the beginning of month 2 will be 0 � 1 �
1 � 0. Thus, in month 2, we should produce x2(0) � 5 units. Then at the beginning of
month 3, our beginning inventory will be 0 � 5 � 3 � 2. Hence, during month 3, we
need to produce x3(2) � 0 units. Then month 4 will begin with 2 � 2 � 0 � 0 units on
hand. Thus, x4(0) � 4 units should be produced during month 4. In summary, the opti-
mal production schedule incurs a total cost of $20 and produces 1 unit during month 1,
5 units during month 2, 0 units during month 3, and 4 units during month 4.

Note that finding the solution to Example 4 is equivalent to finding the shortest route join-
ing the node (1, 0) to the node (5, 0) in Figure 5. Each node in Figure 5 corresponds to
a state, and each column of nodes corresponds to all the possible states associated with a
given stage. For example, if we are at node (2, 3), then we are at the beginning of month
2, and the inventory at the beginning of month 2 is 3 units. Each arc in the network rep-
resents the way in which a decision (how much to produce during the current month)
transforms the current state into next month’s state. For example, the arc joining nodes (1,
0) and (2, 2) (call it arc 1) corresponds to producing 3 units during month 1. To see this,
note that if 3 units are produced during month 1, then we begin month 2 with 0 � 3 �
1 � 2 units. The length of each arc is simply the sum of production and inventory costs
during the current period, given the current state and the decision associated with the cho-
sen arc. For example, the cost associated with arc 1 would be 6 � (�

1
2

�)2 � 7. Note that
some nodes in adjacent stages are not joined by an arc. For example, node (2, 4) is not
joined to node (3, 0). The reason for this is that if we begin month 2 with 4 units, then at
the beginning of month 3, we will have at least 4 � 3 � 1 unit on hand. Also note that
we have drawn arcs joining all month 4 states to the node (5, 0), since having a positive
inventory at the end of month 4 would clearly be suboptimal.

TA B L E 5
Computations for f1(i)

f1(i)
i x (�

1
2

�)(i � x � 1) �c (x) f2(i � x � 1) Total Cost x1(i)

0 1 0 � 4 � 4 16 4 � 16 � 20* f1(0) � 20
0 2 ��

1
2

� � 5 � �
1
2
1
� 15 �

1
2
1
� � 15 � �

4
2
1
� x1(0) � 1

0 3 1 � 6 � 7 14 7 � 14 � 21
0 4 �

3
2

� � 7 � �
1
2
7
� 12 �

1
2
7
� � 12 � �

4
2
1
�

0 5 2 � 8 � 10 �
2
2
1
� 10� �

2
2
1
� � �

4
2
1
�

1 0 0 � 0 � 0 16 0 � 16 � 16* f1(1) � 16
1 1 ��

1
2

� � 4 � �
9
2

� 15 �
9
2

� � 15 � �
3
2
9
� x1(1) � 0

1 2 1 � 5 � 6 14 20
1 3 �

3
2

� � 6 � �
1
2
5
� 12 �

1
2
5
� � 12 � �

3
2
9
�

1 4 2 � 7 � 9 �
2
2
1
� 9 � �

2
2
1
� � �

3
2
9
�

2 0 ��
1
2

� � 0 � ��
1
2

� 15 ��
1
2

� � 15 � �
3
2
1
�* f1(2) � �

3
2
1
�

2 1 1 � 4 � 5 14 5 � 14 � 19 x1(2) � 0
2 2 �

3
2

� � 5 � �
1
2
3
� 12 �

1
2
3
� � 12 � �

3
2
7
�

2 3 2 � 6 � 8 �
2
2
1
� 8 � �

2
2
1
� � �

3
2
7
�

3 0 1 � 0 � 1 14 1 � 14 � 15* f1(3) � 15
3 1 �

3
2

� � 4 � �
1
2
1
� 12 �

1
2
1
� � 12 � �

3
2
5
� x1(3) � 0

3 2 2 � 5 � 7 �
2
2
1
� 7 � �

2
2
1
� � �

3
2
5
�

4 0 �
3
2

� � 0 � �
3
2

� 12 �
3
2

� � 12 � �
2
2
7
�* f1(4) � �

2
2
7
�

4 1 2 � 4 � 6 �
2
2
1
� 6 � �

2
2
1
� � �

3
2
3
� x1(4) � 0

974 C H A P T E R 1 8 Deterministic Dynamic Programming

Returning to Example 4, the minimum-cost production schedule corresponds to the
shortest path joining (1, 0) and (5, 0). As we have already seen, this would be the path
corresponding to production levels of 1, 5, 0, and 4. In Figure 5, this would correspond
to the path beginning at (1, 0), then going to (2, 0 � 1 � 1) � (2, 0), then to (3, 0 �
5 � 3) � (3, 2), then to (4, 2 � 0 � 2) � (4, 0), and finally to (5, 0 � 4 � 4) � (5, 0).
Thus, our optimal production schedule corresponds to the path (1, 0)–(2, 0)–(3, 2)–(4,
0)–(5, 0) in Figure 5.

P R O B L E M S
Group A

1, 0

1, 1

1, 2

1, 3

1, 4

Month 1 Month 2 Month 3 Month 4

Month 5

2, 0

2, 1

2, 2

2, 3

2, 4

3, 0

3, 1

3, 2

3, 3

3, 4

4, 0

4, 1

4, 2 5, 0

4, 3

4, 4
F I G U R E 5

Network Representation
of Inventory Example

1 In Example 4, determine the optimal production
schedule if the initial inventory is 3 units.

2 An electronics firm has a contract to deliver the
following number of radios during the next three months;
month 1, 200 radios; month 2, 300 radios; month 3, 300
radios. For each radio produced during months 1 and 2, a
$10 variable cost is incurred; for each radio produced during
month 3, a $12 variable cost is incurred. The inventory cost
is $1.50 for each radio in stock at the end of a month. The
cost of setting up for production during a month is $250.

Radios made during a month may be used to meet demand
for that month or any future month. Assume that production
during each month must be a multiple of 100. Given that
the initial inventory level is 0 units, use dynamic
programming to determine an optimal production schedule.

3 In Figure 5, determine the production level and cost
associated with each of the following arcs:

a (2, 3)–(3, 1)
b (4, 2)–(5, 0)

18.4 Resource-Allocation Problems
Resource-allocation problems, in which limited resources must be allocated among sev-
eral activities, are often solved by dynamic programming. Recall that we have solved such
problems by linear programming (for instance, the Giapetto problem). To use linear pro-
gramming to do resource allocation, three assumptions must be made:

Assumption 1 The amount of a resource assigned to an activity may be any nonnegative
number.

1 8 . 4 Resource-Allocation Problems 975

Assumption 2 The benefit obtained from each activity is proportional to the amount of
the resource assigned to the activity.

Assumption 3 The benefit obtained from more than one activity is the sum of the bene-
fits obtained from the individual activities.

Even if assumptions 1 and 2 do not hold, dynamic programming can be used to solve
resource-allocation problems efficiently when assumption 3 is valid and when the amount
of the resource allocated to each activity is a member of a finite set.

Finco has $6,000 to invest, and three investments are available. If dj dollars (in thousands)
are invested in investment j, then a net present value (in thousands) of rj(dj) is obtained,
where the rj(dj)’s are as follows:

r1(d1) � 7d1 � 2 (d1 � 0)

r2(d2) � 3d2 � 7 (d2 � 0)

r3(d3) � 4d3 � 5 (d3 � 0)

r1(0) � r2(0) � r3(0) � 0 (d3 � 0)

The amount placed in each investment must be an exact multiple of $1,000. To maximize
the net present value obtained from the investments, how should Finco allocate the
$6,000?

Solution The return on each investment is not proportional to the amount invested in it [for exam-
ple, 16 � r1(2)
 2r1(1) � 18]. Thus, linear programming cannot be used to find an op-
timal solution to this problem.†

Mathematically, Finco’s problem may be expressed as

max{r1(d1) � r2(d2) � r3(d3)}

s.t. d1 � d2 � d3 � 6

dj nonnegative integer (j � 1, 2, 3)

Of course, if the rj(dj)’s were linear, then we would have a knapsack problem like those
we studied in Section 9.5.

To formulate Finco’s problem as a dynamic programming problem, we begin by iden-
tifying the stage. As in the inventory and shortest-route examples, the stage should be cho-
sen so that when one stage remains the problem is easy to solve. Then, given that the prob-
lem has been solved for the case where one stage remains, it should be easy to solve the
problem where two stages remain, and so forth. Clearly, it would be easy to solve when
only one investment was available, so we define stage t to represent a case where funds
must be allocated to investments t, t � 1, . . . , 3.

For a given stage, what must we know to determine the optimal investment amount?
Simply how much money is available for investments t, t � 1, . . . , 3. Thus, we define the
state at any stage to be the amount of money (in thousands) available for investments t,
t � 1, . . . , 3. We can never have more than $6,000 available, so the possible states at any
stage are 0, 1, 2, 3, 4, 5, and 6. We define ft(dt) to be the maximum net present value
(NPV) that can be obtained by investing dt thousand dollars in investments t, t � 1, . . . ,
3. Also define xt(dt) to be the amount that should be invested in investment t to attain ft(dt).
We start to work backward by computing f3(0), f3(1), . . . , f3(6) and then determine f2(0),
f2(1), . . . , f2(6). Since $6,000 is available for investment in investments 1, 2, and 3, we

Resource AllocationE X A M P L E 5

†The fixed-charge approach described in Section 9.2 could be used to solve this problem.

976 C H A P T E R 1 8 Deterministic Dynamic Programming

terminate our computations by computing f1(6). Then we retrace our steps and determine
the amount that should be allocated to each investment (just as we retraced our steps to
determine the optimal production level for each month in Example 4).

Stage 3 Computations

We first determine f3(0), f3(1), . . . , f3(6). We see that f3(d3) is attained by investing all
available money (d3) in investment 3. Thus,

f3(0) � 0 x3(0) � 0

f3(1) � 9 x3(1) � 1

f3(2) � 13 x3(2) � 2

f3(3) � 17 x3(3) � 3

f3(4) � 21 x3(4) � 4

f3(5) � 25 x3(5) � 5

f3(6) � 29 x3(6) � 6

TA B L E 6
Computations for f2 (0), f2 (1), . . . , f2 (6)

NPV from f2(d2)
d2 x2 r2(x2) f3(d2 � x2) Investments 2, 3 x2(d2)

0 0 0 0 0* f2(0) � 0
x2(0) � 0

1 0 0 9 9* f2(1) � 10
1 1 10 0 10* x2(1) � 1
2 0 0 13 13* f2(2) � 19
2 1 10 9 19* x2(2) � 1
2 2 13 0 13*
3 0 0 17 17* f2(3) � 23
3 1 10 13 23* x2(3) � 1
3 2 13 9 22*
3 3 16 0 16*
4 0 0 21 21* f2(4) � 27
4 1 10 17 27* x2(4) � 1
4 2 13 13 26*
4 3 16 9 25*
4 4 19 0 19*
5 0 0 25 25* f2(5) � 31
5 1 10 21 31* x2(5) � 1
5 2 13 17 30*
5 3 16 13 29*
5 4 19 9 28*
5 5 22 0 22*
6 0 0 29 29* f2(6) � 35
6 1 10 25 35* x2(6) � 1
6 2 13 21 34*
6 3 16 17 33*
6 4 19 13 32*
6 5 22 9 31*
6 6 25 0 25*

1 8 . 4 Resource-Allocation Problems 977

Stage 2 Computations

To determine f2(0), f2(1), . . . , f2(6), we look at all possible amounts that can be placed in
investment 2. To find f2(d2), let x2 be the amount invested in investment 2. Then an NPV
of r2(x2) will be obtained from investment 2, and an NPV of f3(d2 � x2) will be obtained
from investment 3 (remember the principle of optimality). Since x2 should be chosen to
maximize the net present value earned from investments 2 and 3, we write

f2(d2) � max
x2

{r2(x2) � f3(d2 � x2)} (5)

where x2 must be a member of {0, 1, . . . , d2}. The computations for f2(0), f2(1), . . . , f2(6)
and x2(0), x2(1), . . . , x2(6) are given in Table 6.

Stage 1 Computations

Following (5), we write

f1(6) � max
x1

{r1(x1) � f2(6 � x1)}

where x1 must be a member of {0, 1, 2, 3, 4, 5, 6}. The computations for f1(6) are given
in Table 7.

Determination of Optimal Resource Allocation

Since x1(6) � 4, Finco invests $4,000 in investment 1. This leaves 6,000 � 4,000 �
$2,000 for investments 2 and 3. Hence, Finco should invest x2(2) � $1,000 in investment
2. Then $1,000 is left for investment 3, so Finco chooses to invest x3(1) � $1,000 in in-
vestment 3. Therefore, Finco can attain a maximum net present value of f1(6) � $49,000
by investing $4,000 in investment 1, $1,000 in investment 2, and $1,000 in investment 3.

Network Representation of Resource Example

As with the inventory example of Section 18.3, Finco’s problem has a network represen-
tation, equivalent to finding the longest route from (1, 6) to (4, 0) in Figure 6. In the fig-
ure, the node (t, d) represents the situation in which d thousand dollars is available for in-
vestments t, t � 1, . . . , 3. The arc joining the nodes (t, d) and (t � 1, d � x) has a length
rt(x) corresponding to the net present value obtained by investing x thousand dollars in
investment t. For example, the arc joining nodes (2, 4) and (3, 1) has a length r2(3) �
$16,000, corresponding to the $16,000 net present value that can be obtained by invest-

TA B L E 7
Computations for f1(6)

NPV from f1(6)
d1 x1 r1(x1) f2(6 � x1) Investments 1–3 x1(6)

6 0 0 35 35 f1(6) � 49
6 1 9 31 40 x1(6) � 4
6 2 16 27 43
6 3 23 23 46
6 4 30 19 49*
6 5 37 10 47
6 6 44 0 44

978 C H A P T E R 1 8 Deterministic Dynamic Programming

ing $3,000 in investment 2. Note that not all pairs of nodes in adjacent stages are joined
by arcs. For example, there is no arc joining the nodes (2, 4) and (3, 5); after all, if you
have only $4,000 available for investments 2 and 3, how can you have $5,000 available
for investment 3? From our computations, we see that the longest path from (1, 6) to (4,
0) is (1, 6)–(2, 2)–(3, 1)–(4, 0).

Generalized Resource Allocation Problem

We now consider a generalized version of Example 5. Suppose we have w units of a re-
source available and T activities to which the resource can be allocated. If activity t is im-
plemented at a level xt (we assume xt must be a nonnegative integer), then gt(xt) units of
the resource are used by activity t, and a benefit rt(xt) is obtained. The problem of deter-
mining the allocation of resources that maximizes total benefit subject to the limited re-
source availability may be written as

max �
t�T

t�1

rt(xt) 	 w

(6)

s.t. �
t�T

t�1

gt(xt) 	 w

where xt must be a member of {0, 1, 2, . . . }. Some possible interpretations of rt(xt), gt(xt),
and w are given in Table 8.

To solve (6) by dynamic programming, define ft(d) to be the maximum benefit that can
be obtained from activities t, t � 1, . . . , T if d units of the resource may be allocated to
activities t, t � 1, . . . , T. We may generalize the recursions of Example 5 to this situa-
tion by writing

fT�1(d) � 0 for all d
(7)

ft(d) � max
xt

{rt(xt) � ft�1[d � gt(xt)]}

where xt must be a nonnegative integer satisfying gt(xt) 	 d. Let xt(d) be any value of xt

that attains ft(d). To use (7) to determine an optimal allocation of resources to activities
1, 2, . . . , T, we begin by determining all fT(�) and xT(�). Then we use (7) to determine all
fT�1(�) and xT�1(�), continuing to work backward in this fashion until all f2(�) and x2(�)

3, 6

3, 5

3, 4

4, 03, 3

3, 2

3, 1

3, 0

2, 6

2, 5

2, 4

2, 3

2, 2

2, 1

2, 0

1, 6

Stage 1

Stage 2 Stage 3

Stage 4

F I G U R E 6
Network Representation

of Finco

1 8 . 4 Resource-Allocation Problems 979

have been determined. To wind things up, we now calculate f1(w) and x1(w). Then we im-
plement activity 1 at a level x1(w). At this point, we have w � g1[x1(w)] units of the re-
source available for activities 2, 3, . . . , T. Then activity 2 should be implemented at a
level of x2{w � g1[x1(w)]}. We continue in this fashion until we have determined the level
at which all activities should be implemented.

Solution of Knapsack Problems by Dynamic Programming

We illustrate the use of (7) by solving a simple knapsack problem (see Section 9.5). Then
we develop an alternative recursion that can be used to solve knapsack problems.

Suppose a 10-lb knapsack is to be filled with the items listed in Table 9. To maximize to-
tal benefit, how should the knapsack be filled?

Solution We have r1(x1) � 11x1, r2(x2) � 7x2, r3(x3) � 12x3, g1(x1) � 4x1, g2(x2) � 3x2, and g3(x3)
� 5x3. Define ft(d) to be the maximum benefit that can be earned from a d-pound knap-
sack that is filled with items of Type t, t � 1, . . . , 3.

Stage 3 Computations

Now (7) yields

f3(d) � max
x3

{12x3}

KnapsackE X A M P L E 6

TA B L E 8
Examples of a Generalized Resource Allocation Problem

Interpretation Interpretation of Interpretation
of rt (xt) gt (xt) of w

Benefit from placing xt Weight of xt type t items Maximum weight that
type t items in a knapsack knapsack can hold
Grade obtained in course t Number of hours per week xt Total number of study hours
if we study course t for xt spent studying course t available each week
hours per week
Sales of a product in Cost of assigning xt sales Total sales force budget
region t if xt sales reps are reps to region t
assigned to region t
Number of fire alarms per Cost per week of maintaining Total weekly budget for
week responded to within xt fire engines in precinct t maintaining fire engines
one minute if precinct t
is assigned xt engines

TA B L E 9
Weights and Benefits for Knapsack

Item Weight (lb) Benefit

1 4 11
2 3 7
3 5 12

980 C H A P T E R 1 8 Deterministic Dynamic Programming

where 5x3 	 d and x3 is a nonnegative integer. This yields

f3(10) � 24

f3(5) � f3(6) � f3(7) � f3(8) � f3(9) � 12

f3(0) � f3(1) � f3(2) � f3(3) � f3(4) � 0

x3(10) � 2

x3(9) � x3(8) � x3(7) � x3(6) � x3(5) � 1

x3(0) � x3(1) � x3(2) � x3(3) � x3(4) � 0

Stage 2 Computations

Now (7) yields

f2(d) � max
x2

{7x2 � f3(d � 3x2)}

where x2 must be a nonnegative integer satisfying 3x2 	 d. We now obtain

7(0) � f3(10) � 24* x2 � 0

f2(10) � max �7(1) � f3(7) � 19 * x2 � 1

7(2) � f3(4) � 14 * x2 � 2

7(3) � f3(1) � 21 * x2 � 3

Thus, f2(10) � 24 and x2(10) � 0.

7(0) � f3(9) � 12 *x2 � 0

f2(9) � max �7(1) � f3(6) � 19 * x2 � 1

7(2) � f3(3) � 14 * x2 � 2

7(3) � f3(0) � 21* x2 � 3

Thus, f2(9) � 21 and x2(9) � 3.

7(0) � f3(8) � 12 * x2 � 0

f2(8) � max �7(1) � f3(5) � 19* x2 � 1

7(2) � f3(2) � 14 * x2 � 2

Thus, f2(8) � 19 and x2(8) � 1.

7(0) � f3(7) � 12 * x2 � 0

f2(7) � max �7(1) � f3(4) � 7 * x2 � 1

7(2) � f3(1) � 14* x2 � 2

Thus, f2(7) � 14 and x2(7) � 2.

7(0) � f3(6) � 12 * x2 � 0

f2(6) � max �7(1) � f3(3) � 7 * x2 � 1

7(2) � f3(0) � 14* x2 � 2

Thus, f2(6) � 14 and x2(6) � 2.

f2(5) � max �7(0) � f3(5) � 12* x2 � 0

7(1) � f3(2) � 7 * x2 � 1

Thus, f2(5) � 12 and x2(5) � 0.

f2(4) � max �7(0) � f3(4) � 0 * x2 � 0

7(1) � f3(1) � 7* x2 � 1

1 8 . 4 Resource-Allocation Problems 981

Thus, f2(4) � 7 and x2(4) � 1.

f2(3) � max �7(0) � f3(3) � 0* x2 � 0

7(1) � f3(0) � 7* x2 � 1

Thus, f2(3) � 7 and x2(3) � 1.

f2(2) � 7(0) � f3(2) � 0 x2 � 0

Thus, f2(2) � 0 and x2(2) � 0.

f2(1) � 7(0) � f3(1) � 0 x2 � 0

Thus, f2(1) � 0 and x2(1) � 0.

f2(0) � 7(0) � f3(0) � 0 x2 � 0

Thus, f2(0) � 0 and x2(0) � 0.

Stage 1 Computations

Finally, we determine f1(10) from

11(0) � f2(10) � 24* x1 � 0

f1(10) � max �11(1) � f2(6)0 � 25* x1 � 1

11(2) � f2(2)0 � 22* x1 � 2

Determination of the Optimal Solution to Knapsack Problem

We have f1(10) � 25 and x1(10) � 1. Hence, we should include one Type 1 item in the
knapsack. Then we have 10 � 4 � 6 lb left for Type 2 and Type 3 items, so we should
include x2(6) � 2 Type 2 items. Finally, we have 6 � 2(3) � 0 lb left for Type 3 items,
and we include x3(0) � 0 Type 3 items. In summary, the maximum benefit that can be
gained from a 10-lb knapsack is f3(10) � 25. To obtain a benefit of 25, one Type 1 and
two Type 2 items should be included.

Network Representation of Knapsack Problem

Finding the optimal solution to Example 6 is equivalent to finding the longest path in Fig-
ure 7 from node (10, 1) to some stage 4 node. In Figure 7, for t 	 3, the node (d, t) rep-
resents a situation in which d pounds of space may be allocated to items of Type t, t � 1,
. . . , 3. The node (d, 4) represents d pounds of unused space. Each arc from a stage t node
to a stage t � 1 node represents a decision of how many Type t items are placed in the
knapsack. For example, the arc from (10, 1) to (6, 2) represents placing one Type 1 item
in the knapsack. This leaves 10 � 4 � 6 lb for items of Types 2 and 3. This arc has a
length of 11, representing the benefit obtained by placing one Type 1 item in the knap-
sack. Our solution to Example 6 shows that the longest path in Figure 7 from node (10,
1) to a stage 4 node is (10, 1)–(6, 2)–(0, 3)–(0, 4). We note that the optimal solution to a
knapsack problem does not always use all the available weight. For example, the reader
should verify that if a Type 1 item earned 16 units of benefit, the optimal solution would
be to include two type 1 items, corresponding to the path (10, 1)–(2, 2)–(2, 3)–(2, 4). This
solution leaves 2 lb of space unused.

982 C H A P T E R 1 8 Deterministic Dynamic Programming

An Alternative Recursion for Knapsack Problems

Other approaches can be used to solve knapsack problems by dynamic programming. The
approach we now discuss builds up the optimal knapsack by first determining how to fill
a small knapsack optimally and then, using this information, how to fill a larger knapsack
optimally. We define g(w) to be the maximum benefit that can be gained from a w-lb knap-
sack. In what follows, bj is the benefit earned from a single Type j item, and wj is the
weight of a single Type j item. Clearly, g(0) � 0, and for w � 0,

g(w) � max
j

{bj � g(w � wj)} (8)

where j must be a member of {1, 2, 3}, and j must satisfy wj 	 w. The reasoning behind
(8) is as follows: To fill a w-lb knapsack optimally, we must begin by putting some type
of item into the knapsack. If we begin by putting a Type j item into a w-lb knapsack, the
best we can do is earn bj � [best we can do from a (w � wj)-lb knapsack]. After noting
that a Type j item can be placed into a w-lb knapsack only if wj 	 w, we obtain (8). We
define x(w) to be any type of item that attains the maximum in (8) and x(w) � 0 to mean
that no item can fit into a w-lb knapsack.

To illustrate the use of (8), we re-solve Example 6. Because no item can fit in a 0-, 1-,
or 2-lb knapsack, we have g(0) � g(1) � g(2) � 0 and x(0) � x(1) � x(2) � 0. Only a
Type 2 item fits into a 3-lb knapsack, so we have that g(3) � 7 and x(3) � 2. Continu-
ing, we find that

10, 3

9, 3

8, 3

7, 3

6, 3

5, 3

4, 3

3, 3

2, 3

1, 3

0, 3

4, 4

3, 4

2, 4

1, 4

0, 4

10, 1

9, 1

8, 1

7, 1

6, 1

5, 1

4, 1

3, 1

2, 1

1, 1

0, 1

Stage 1 Stage 2 Stage 3 Stage 4

10, 2

9, 2

8, 2

7, 2

6, 2

5, 2

4, 2

3, 2

2, 2

1, 2

0, 2

F I G U R E 7
Network of

Representation of
Knapsack

1 8 . 4 Resource-Allocation Problems 983

g(4) � max �11 � g(0) � 11* (Type 1 item)

7 � g(1) � 7 * (Type 2 item)

Thus, g(4) � 11 and x(4) � 1.

11 � g(1) � 11 (Type 1 item)

g(5) � max � 7 � g(2) � 7 * (Type 2 item)

12 � g(0) � 12* (Type 3 item)

Thus, g(5) � 12 and x(5) � 3.

11 � g(2) � 11* (Type 1 item)

g(6) � max � 7 � g(3) � 14* (Type 2 item)

12 � g(1) � 12* (Type 3 item)

Thus, g(6) � 14 and x(6) � 2.

11 � g(3) � 18* (Type 1 item)

g(7) � max � 7 � g(4) � 18* (Type 2 item)

12 � g(2) � 12* (Type 3 item)

Thus, g(7) � 18 and x(7) � 1 or x(7) � 2.

11 � g(4) � 22* (Type 1 item)

g(8) � max � 7 � g(5) � 19* (Type 2 item)

12 � g(3) � 19* (Type 3 item)

Thus, g(8) � 22 and x(8) � 1.

11 � g(5) � 23* (Type 1 item)

g(9) � max � 7 � g(6) � 21* (Type 2 item)

12 � g(4) � 23* (Type 3 item)

Thus, g(9) � 23 and x(9) � 1 or x(9) � 3.

11 � g(6) � 25* (Type 1 item)

g(10) � max � 7 � g(7) � 25* (Type 2 item)

12 � g(5) � 24* (Type 3 item)

Thus, g(10) � 25 and x(10) � 1 or x(10) � 2. To fill the knapsack optimally, we begin
by putting any x(10) item in the knapsack. Let’s arbitrarily choose a Type 1 item. This
leaves us with 10 � 4 � 6 lb to fill, so we now put an x(10 � 4) � 2 (Type 2) item in
the knapsack. This leaves us with 6 � 3 � 3 lb to fill, which we do with an x(6 � 3) �
2 (Type 2) item. Hence, we may attain the maximum benefit of g(10) � 25 by filling the
knapsack with two Type 2 items and one Type 1 item.

A Turnpike Theorem

For a knapsack problem, let

cj � benefit obtained from each type j item

wj � weight of each type j item type j item

984 C H A P T E R 1 8 Deterministic Dynamic Programming

In terms of benefit per unit weight, the best item is the item with the largest value of �
w

cj

j

�.
Assume there are n types of items that have been ordered, so that

�
w
c1

1
� � �

w
c2

2
� � ��� � �

w
cn

n
�

Thus, Type 1 items are the best, Type 2 items are the second best, and so on. Recall from
Section 9.5 that it is possible for the optimal solution to a knapsack problem to use none
of the best item. For example, the optimal solution to the knapsack problem

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 5x3 � 4x4 	14

xi nonnegative integer

is z � 44, x2 � 2, x1 � x3 � x4 � 0, and this solution does not use any of the best (Type
1) item. Assume that

�
w
c1

1
� � �

w
c2

2
�

Thus, there is a unique best item type. It can be shown that for some number w*, it is op-
timal to use at least one Type 1 item if the knapsack is allowed to hold w pounds, where
w � w*. In Problem 6 at the end of this section, you will show that this result holds for

w* �

Thus, for the knapsack problem

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 5x3 � 4x4 	 w

xi nonnegative integer

at least one Type 1 item will be used if

w � � 280

This result can greatly reduce the computation needed to solve a knapsack problem. For
example, suppose that w � 4,000. We know that for w � 280, the optimal solution will
use at least one Type 1 item, so we can conclude that the optimal way to fill a 4,000-lb
knapsack will consist of one Type 1 item plus the optimal way to fill a knapsack of
4,000 � 5 � 3,995 lb. Repeating this reasoning shows that the optimal way to fill a
4,000-lb knapsack will consist of �4,000

5
�280
� � 744 Type 1 items plus the optimal way to

fill a knapsack of 280 lb. This reasoning substantially reduces the computation needed to
determine how to fill a 4,000-lb knapsack. (Actually, the 280-lb knapsack will use at least
one Type 1 item, so we know that to fill a 4,000-lb knapsack optimally, we can use 745
Type 1 items and then optimally fill a 275-lb knapsack.)

Why is this result referred to as a turnpike theorem? Think about taking an automo-
bile trip in which our goal is to minimize the time needed to complete the trip. For a long
enough trip, it may be advantageous to go slightly out of our way so that most of the trip
will be spent on a turnpike, on which we can travel at the greatest speed. For a short trip,
it may not be worth our while to go out of our way to get on the turnpike.

Similarly, in a long (large-weight) knapsack problem, it is always optimal to use some
of the best items, but this may not be the case in a short knapsack problem. Turnpike re-
sults abound in the dynamic programming literature [see Morton (1979)].

16(5)
��
16 � 5(�

2
7
2
�)

c1w1��

c1 � w1 ��
w
c2

2
��

1 8 . 5 Equipment-Replacement Problems 985

P R O B L E M S
Group A

1 J. R. Carrington has $4 million to invest in three oil well
sites. The amount of revenue earned from site i(i � 1, 2, 3)
depends on the amount of money invested in site i (see
Table 10). Assuming that the amount invested in a site must
be an exact multiple of $1 million, use dynamic
programming to determine an investment policy that will
maximize the revenue J. R. will earn from his three oil
wells.

2 Use either of the approaches outlined in this section to
solve the following knapsack problem:

max z � 5x1 � 4x2 � 2x3

s.t. 4x1 � 3x2 � 2x3 	 8
x1, x2, x3 � 0; x1, x2, x3 integer

3 The knapsack problem of Problem 2 can be viewed as
finding the longest route in a particular network.

a Draw the network corresponding to the recursion
derived from (7).
b Draw the network corresponding to the recursion
derived from (8).

4 The number of crimes in each of a city’s three police
precincts depends on the number of patrol cars assigned to
each precinct (see Table 11). Five patrol cars are available.
Use dynamic programming to determine how many patrol
cars should be assigned to each precinct.

5 Use dynamic programming to solve a knapsack problem
in which the knapsack can hold up to 13 lb (see Table 12).

Group B

6 Consider a knapsack problem for which

�
w
c1

1
� � �

w
c2

2
�

Show that if the knapsack can hold w pounds, and w � w*,
where

w* �

then the optimal solution to the knapsack problem must use
at least one Type 1 item.

c1w1��

18.5 Equipment-Replacement Problems
Many companies and customers face the problem of determining how long a machine
should be utilized before it should be traded in for a new one. Problems of this type
are called equipment-replacement problems and can often be solved by dynamic
programming.

An auto repair shop always needs to have an engine analyzer available. A new engine an
lyzer costs $1,000. The cost mi of maintaining an engine analyzer during its ith year of
operation is as follows: m1 � $60, m2 � $80, m3 � $120. An analyzer may be kept for

TA B L E 10

Amount Invested
Revenue ($ Millions)

($ Millions) Site 1 Site 2 Site 3

0 4 3 13
1 7 6 17
2 8 10 8
3 9 12 13
4 11 14 15

TA B L E 11

No. of Patrol Cars Assigned to Precinct

Precinct 0 1 2 3 4 5

1 14 10 7 4 1 0
2 25 19 16 14 12 11
3 20 14 11 8 6 5

TA B L E 12

Item Weight (lb) Benefit

1 3 12
2 5 25
3 7 50

Equipment ReplacementE X A M P L E 7

986 C H A P T E R 1 8 Deterministic Dynamic Programming

1, 2, or 3 years; after i years of use (i � 1, 2, 3), it may be traded in for a new one. If an
i-year-old engine analyzer is traded in, a salvage value si is obtained, where s1 � $800,
s2 � $600, and s3 � $500. Given that a new machine must be purchased now (time 0;
see Figure 8), the shop wants to determine a replacement and trade-in policy that mini-
mizes net costs � (maintenance costs) � (replacement costs) – (salvage value received)
during the next 5 years.

Solution We note that after a new machine is purchased, the firm must decide when the newly pur-
chased machine should be traded in for a new one. With this in mind, we define g(t) to
be the minimum net cost incurred from time t until time 5 (including the purchase cost
and salvage value for the newly purchased machine) given that a new machine has been
purchased at time t. We also define ctx to be the net cost (including purchase cost and sal-
vage value) of purchasing a machine at time t and operating it until time x. Then the ap-
propriate recursion is

g(t) � min
x

{ctx � g(x)} (t � 0, 1, 2, 3, 4) (9)

where x must satisfy the inequalities t � 1 	 x 	 t � 3 and x 	 5. Because the problem
is over at time 5, no cost is incurred from time 5 onward, so we may write g(5) � 0.

To justify (9), note that after a new machine is purchased at time t, we must decide
when to replace the machine. Let x be the time at which the replacement occurs. The re-
placement must be after time t but within 3 years of time t. This explains the restriction
that t � 1 	 x 	 t � 3. Since the problem ends at time 5, we must also have x 	 5. If
we choose to replace the machine at time x, then what will be the cost from time t to time
5? Simply the sum of the cost incurred from the purchase of the machine to the sale of
the machine at time x (which is by definition ctx) and the total cost incurred from time x
to time 5 (given that a new machine has just been purchased at time x). By the principle
of optimality, the latter cost is, of course, g(x). Hence, if we keep the machine that was
purchased at time t until time x, then from time t to time 5, we incur a cost of ctx � g(x).
Thus, x should be chosen to minimize this sum, and this is exactly what (9) does. We have
assumed that maintenance costs, salvage value, and purchase price remain unchanged
over time, so each ctx will depend only on how long the machine is kept; that is, each ctx

depends only on x � t. More specifically,

ctx � $1,000 � m1 � � � � � mx�t � sx�t

This yields

c01 � c12 � c23 � c34 � c45 � 1,000 � 60 � 800 � $260

c02 � c13 � c24 � c35 � 1,000 � 60 � 80 � 600 � $540

c03 � c14 � c25 � 1,000 � 60 � 80 � 120 � 500 � $760

We begin by computing g(4) and work backward until we have computed g(0). Then we
use our knowledge of the values of x attaining g(0), g(1), g(2), g(3), and g(4) to deter-
mine the optimal replacement strategy. The calculations follow.

At time 4, there is only one sensible decision (keep the machine until time 5 and sell
it for its salvage value), so we find

g(4) � c45 � g(5) � 260 � 0 � $260*

Year 1

Time
0

Time
1

Time
2

Time
3

Time
4

Time
5

Year 2 Year 3 Year 4 Year 5F I G U R E 8
Time Horizon for

Equipment
Replacement

1 8 . 5 Equipment-Replacement Problems 987

Thus, if a new machine is purchased at time 4, it should be traded in at time 5.
If a new machine is purchased at time 3, we keep it until time 4 or time 5. Hence,

g(3) � min �c34 � g(4) � 260 � 260 � $520* (Trade at time 4)

c35 � g(5) � 540 � 0 � $540 (Trade at time 5)

Thus, if a new machine is purchased at time 3, we should trade it in at time 4.
If a new machine is purchased at time 2, we trade it in at time 3, time 4, or time 5.

This yields

c23 � g(3) � 260 � 520 � $780 (Trade at time 3)

g(2) � min �c24 � g(4) � 540 � 260 � $800 (Trade at time 4)

c25 � g(5) � $760* (Trade at time 5)

Thus, if we purchase a new machine at time 2, we should keep it until time 5 and then
trade it in.

If a new machine is purchased at time 1, we trade it in at time 2, time 3, or time 4.
Then

c12 � g(2) � 260 � 760 � $1,020* (Trade at time 2)

g(1) � min �c13 � g(3) � 540 � 520 � $1,060* (Trade at time 3)

c14 � g(4) � 760 � 260 � $1,020* (Trade at time 4)

Thus, if a new machine is purchased at time 1, it should be traded in at time 2 or time 4.
The new machine that was purchased at time 0 may be traded in at time 1, time 2, or

time 3. Thus,

c01 � g(1) � 260 � 1,020 � $1,280* (Trade at time 1)

g(0) � min �c02 � g(2) � 540 � 760 � $1,300 (Trade at time 2)

c03 � g(3) � 760 � 520 � $1,280*,4 (Trade at time 3)

Thus, the new machine purchased at time 0 should be replaced at time 1 or time 3. Let’s
arbitrarily choose to replace the time 0 machine at time 1. Then the new time 1 machine
may be traded in at time 2 or time 4. Again we make an arbitrary choice and replace the
time 1 machine at time 2. Then the time 2 machine should be kept until time 5, when it
is sold for salvage value. With this replacement policy, we will incur a net cost of g(0) �
$1,280. The reader should verify that the following replacement policies are also optimal:
(1) trading in at times 1, 4, and 5 and (2) trading in at times 3, 4, and 5.

We have assumed that all costs remain stationary over time. This assumption was made
solely to simplify the computation of the ctx’s. If we had relaxed the assumption of sta-
tionary costs, then the only complication would have been that the ctx’s would have been
messier to compute. We also note that if a short planning horizon is used, the optimal re-
placement policy may be extremely sensitive to the length of the planning horizon. Thus,
more meaningful results can be obtained by using a longer planning horizon.

An equipment-replacement model was actually used by Phillips Petroleum to reduce
costs associated with maintaining the company’s stock of trucks (see Waddell (1983)).

Network Representation of Equipment-Replacement Problem

The reader should verify that our solution to Example 7 was equivalent to finding the
shortest path from node 0 to node 5 in the network in Figure 9. The length of the arc join-
ing nodes i and j is cij.

988 C H A P T E R 1 8 Deterministic Dynamic Programming

An Alternative Recursion

There is another dynamic programming formulation of the equipment-replacement model.
If we define the stage to be the time t and the state at any stage to be the age of the en-
gine analyzer at time t, then an alternative dynamic programming recursion can be de-
veloped. Define ft(x) to be the minimum cost incurred from time t to time 5, given that at
time t the shop has an x-year-old analyzer. The problem is over at time 5, so we sell the
machine at time 5 and receive �sx. Then f5(x) � �sx, and for t � 0, 1, 2, 3, 4,

ft(3) � �500 � 1,000 � 60 � ft�1(1) (Trade) (10)

ft(2) � min ��600 � 1,000 � 60 � ft�1(1) (Trade)
(10.1)

120 � ft�1(3) (Keep)

ft(1) � min ��800 � 1,000 � 60 � ft�1(1) (Trade)
(10.2)

80 � ft�1(2) (Keep)

f0(0) � 1,000 � 60 � f1(1) (Keep) (10.3)

The rationale behind Equations (10)–(10.3) is that if we have a 1- or 2-year-old analyzer,
then we must decide between replacing the machine or keeping it another year. In (10.1)
and (10.2), we compare the costs of these two options. For any option, the total cost from
t until time 5 is the sum of the cost during the current year plus costs from time t � 1 to
time 5. If we have a 3-year-old analyzer, then we must replace it, so there is no choice.
The way we have defined the state means that it is only possible to be in state 0 at time
0. In this case, we must keep the analyzer for the first year (incurring a cost of $1,060).
From this point on, a total cost of f1(1) is incurred. Thus, (10.3) follows. Since we know
that f5(1) � �800, f5(2) � �600, and f5(3) � �500, we can immediately compute all
the f4(�)’s. Then we can compute the f3(�)’s. We continue in this fashion until f0(0) is de-
termined (remember that we begin with a new machine). Then we follow our usual
method for determining an optimal policy. That is, if f0(0) is attained by keeping the
machine, then we keep the machine for a year and then, during year 1, we choose the ac-
tion that attains f1(1). Continuing in this fashion, we can determine for each time whether
or not the machine should be replaced. (See Problem 1 below.)

P R O B L E M S
Group A

0
Time

1 2 3 4 5

F I G U R E 9
Network Representation

of Equipment
Replacement

1 Use Equations (10)–(10.3) to determine an optimal
replacement policy for the engine analyzer example.

2 Suppose that a new car costs $10,000 and that the annual
operating cost and resale value of the car are as shown in
Table 13. If I have a new car now, determine a replacement
policy that minimizes the net cost of owning and operating
a car for the next six years.

3 It costs $40 to buy a telephone from a department store.
The estimated maintenance cost for each year of operation
is shown in Table 14. (I can keep a telephone for at most
five years.) I have just purchased a new telephone, and my
old telephone has no salvage value. Determine how to
minimize the total cost of purchasing and operating a
telephone for the next six years.

1 8 . 6 Formulating Dynamic Programming Recursions 989

18.6 Formulating Dynamic Programming Recursions
In many dynamic programming problems (such as the inventory and shortest path exam-
ples), a given stage simply consists of all the possible states that the system can occupy
at that stage. If this is the case, then the dynamic programming recursion (for a min prob-
lem) can often be written in the following form:

ft(i) � min{(cost during stage t) � ft�1 (new state at stage t � 1)} (11)

where the minimum in (11) is over all decisions that are allowable, or feasible, when the
state at stage t is i. In (11), ft(i) is the minimum cost incurred from stage t to the end of
the problem (say, the problem ends after stage T), given that at stage t the state is i.

Equation (11) reflects the fact that the minimum cost incurred from stage t to the end
of the problem must be attained by choosing at stage t an allowable decision that mini-
mizes the sum of the costs incurred during the current stage (stage t) plus the minimum
cost that can be incurred from stage t � 1 to the end of the problem. Correct formulation
of a recursion of the form (11) requires that we identify three important aspects of the
problem:

Aspect 1 The set of decisions that is allowable, or feasible, for the given state and stage.
Often, the set of feasible decisions depends on both t and i. For instance, in the inventory
example of Section 18.3, let

dt � demand during month tof month t

it � inventory at beginning of month t

In this case, the set of allowable month t decisions (let xt represent an allowable produc-
tion level) consists of the members of {0, 1, 2, 3, 4, 5} that satisfy 0 	 (it � xt � dt) 	
4. Note how the set of allowable decisions at time t depends on the stage t and the state
at time t, which is it.

Aspect 2 We must specify how the cost during the current time period (stage t) depends
on the value of t, the current state, and the decision chosen at stage t. For instance, in the
inventory example of Section 18.3, suppose a production level xt is chosen during month
t. Then the cost during month t is given by c(xt) � (�

1
2

�)(it � xt � dt).

Aspect 3 We must specify how the state at stage t � 1 depends on the value of t, the state
at stage t, and the decision chosen at stage t. Again referring to the inventory example,
the month t � 1 state is it � xt � dt.

If you have properly identified the state, stage, and decision, then aspects 1–3 shouldn’t
be too hard to handle. A word of caution, however: Not all recursions are of the form
(11). For instance, our first equipment-replacement recursion skipped over time t � 1.

TA B L E 13

Age of Car Resale Operating
(Years) Value ($) Cost ($)

1 7,000 300 (year 1)
2 6,000 500 (year 2)
3 4,000 800 (year 3)
4 3,000 1,200 (year 4)
5 2,000 1,600 (year 5)
6 1,000 2,200 (year 6)

TA B L E 14

Maintenance
Year Cost ($)

1 20
2 30
3 40
4 60
5 70

This often occurs when the stage alone supplies sufficient information to make an opti-
mal decision. We now work through several examples that illustrate the art of formulat-
ing dynamic programming recursions.

The owner of a lake must decide how many bass to catch and sell each year. If she sells
x bass during year t, then a revenue r(x) is earned. The cost of catching x bass during a
year is a function c(x, b) of the number of bass caught during the year and of b, the num-
ber of bass in the lake at the beginning of the year. Of course, bass do reproduce. To model
this, we assume that the number of bass in the lake at the beginning of a year is 20% more
than the number of bass left in the lake at the end of the previous year. Assume that there
are 10,000 bass in the lake at the beginning of the first year. Develop a dynamic pro-
gramming recursion that can be used to maximize the owner’s net profits over a T-year
horizon.

Solution In problems where decisions must be made at several points in time, there is often a trade-
off of current benefits against future benefits. For example, we could catch many bass
early in the problem, but then the lake would be depleted in later years, and there would
be very few bass to catch. On the other hand, if we catch very few bass now, we won’t
make much money early, but we can make a lot of money near the end of the horizon. In
intertemporal optimization problems, dynamic programming is often used to analyze
these complex trade-offs.

At the beginning of year T, the owner of the lake need not worry about the effect that
the capture of bass will have on the future population of the lake. (At time T, there is no
future!) So at the beginning of year T, the problem is relatively easy to solve. For this rea-
son, we let time be the stage. At each stage, the owner of the lake must decide how many
bass to catch. We define xt to be the number of bass caught during year t. To determine an
optimal value of xt, the owner of the lake need only know the number of bass (call it bt)
in the lake at the beginning of year t. Therefore, the state at the beginning of year t is bt.

We define ft(bt) to be the maximum net profit that can be earned from bass caught dur-
ing years t, t � 1, . . . , T given that bt bass are in the lake at the beginning of year t. We
may now dispose of aspects 1–3 of the recursion.

Aspect 1 What are the allowable decisions? During any year, we can’t catch more bass
than there are in the lake. Thus, in each state and for all t, 0 	 xt 	 bt must hold.

Aspect 2 What is the net profit earned during year t? If xt bass are caught during a year
that begins with bt bass in the lake, then the net profit is r(xt) � c(xt, bt).

Aspect 3 What will be the state during year t � 1? At the end of year t, there will be
bt � xt bass in the lake. By the beginning of year t � 1, these bass will have multiplied
by 20%. This implies that at the beginning of year t � 1, 1.2(bt � xt) bass will be in the
lake. Thus, the year t � 1 state will be 1.2(bt � xt).

We can now use (11) to develop the appropriate recursion. After year T, there are no
future profits to consider, so

fT (bT) � max
xT

{rT (xT) � c(xT, bT)}

where 0 	 xT 	 bT. Applying (11), we obtain

ft(bt) � max{r(xt) � c(xt, bt) � ft�1[1.2(bt � xt)]} (12)

where 0 	 xt 	 bt. To begin the computations, we first determine fT (bT) for all values of
bT that might occur [bT could be up to 10,000(1.2)T�1; why?]. Then we use (12) to work

990 C H A P T E R 1 8 Deterministic Dynamic Programming

A FisheryE X A M P L E 8

1 8 . 6 Formulating Dynamic Programming Recursions 991

backward until f1(10,000) has been computed. Then, to determine an optimal fishing pol-
icy, we begin by choosing x1 to be any value attaining the maximum in the (12) equation
for f1(10,000). Then year 2 will begin with 1.2(10,000 � x1) bass in the lake. This means
that x2 should be chosen to be any value attaining the maximum in the (12) equation for
f2(1.2(10,000 � x1)). Continue in this fashion until the optimal values of x3, x4, . . . , xT

have been determined.

Incorporating the Time Value of Money
into Dynamic Programming Formulations

A weakness of the current formulation is that profits received during later years are
weighted the same as profits received during earlier years. As mentioned in the discussion
of discounting (in Chapter 3), later profits should be weighted less than earlier profits.
Suppose that for some b � 1, $1 received at the beginning of year t � 1 is equivalent to
b dollars received at the beginning of year t. We can incorporate this idea into the dy-
namic programming recursion by replacing (12) with

ft(bt) � max
xt

{r(xt) � c(xt, bt) � bft�1[1.2(bt � xt)]} (12’)

where 0 	 xt 	 bt. Then we redefine ft(bt) to be the maximum net profit (in year t dollars)
that can be earned during years t, t � 1, . . . , T. Since ft�1 is measured in year t � 1 dollars,
multiplying it by b converts ft�1(�) to year t dollars, which is just what we want. In Example
8, once we have worked backward and determined f1(10,000), an optimal fishing policy is
found by using the same method that was previously described. This approach can be used
to account for the time value of money in any dynamic programming formulation.

An electric power utility forecasts that rt kilowatt-hours (kwh) of generating capacity will
be needed during year t (the current year is year 1). Each year, the utility must decide by
how much generating capacity should be expanded. It costs ct(x) dollars to increase gen-
erating capacity by x kwh during year t. It may be desirable to reduce capacity, so x need
not be nonnegative. During each year, 10% of the old generating capacity becomes ob-
solete and unusable (capacity does not become obsolete during its first year of operation).
It costs the utility mt(i) dollars to maintain i units of capacity during year t. At the be-
ginning of year 1, 100,000 kwh of generating capacity are available. Formulate a dynamic
programming recursion that will enable the utility to minimize the total cost of meeting
power requirements for the next T years.

Solution Again, we let time be the stage. At the beginning of year t, the utility must determine the
amount of capacity (call it xt) to add during year t. To choose xt properly, all the utility
needs to know is the amount of available capacity at the beginning of year t (call it it).
Hence, we define the state at the beginning of year t to be the current capacity level. We
may now dispose of aspects 1–3 of the formulation.

Aspect 1 What values of xt are feasible? To meet year t’s requirement of rt, we must have
it � xt � rt, or xt � rt � it. So the feasible xt’s are those values of xt satisfying xt � rt � it.

Aspect 2 What cost is incurred during year t? If xt kwh are added during a year that begins
with it kwh of available capacity, then during year t, a cost ct(xt) � mt(it � xt) is incurred.

Aspect 3 What will be the state at the beginning of year t � 1? At the beginning of year
t � 1, the utility will have 0.9it kwh of old capacity plus the xt kwh that have been added
during year t. Thus, the state at the beginning of year t � 1 will be 0.9it � xt.

Power PlantE X A M P L E 9

992 C H A P T E R 1 8 Deterministic Dynamic Programming

We can now use (11) to develop the appropriate recursion. Define ft(it) to be the minimum
cost incurred by the utility during years t, t � 1, . . . , T, given that it kwh of capacity are
available at the beginning of year t. At the beginning of year T, there are no future costs
to consider, so

fT (iT) � min
xT

{cT (xT) � mT (iT � xT)} (13)

where xT must satisfy xT � rT � iT. For t � T,

ft(it) � min
xT

{ct(xt) � mt(it � xt) � ft�1(0.9it � xt)} (14)

where xt must satisfy xt � rt � it. If the utility does not start with any excess capacity, then
we can safely assume that the capacity level would never exceed rMAX � max

t�1, 2,..., T
{rt}.

This means that we need consider only states 0, 1, 2, . . . , rMAX. To begin computations, we
use (13) to compute fT (0), fT (1), . . . , fT (rMAX). Then we use (14) to work backward until
f1(100,000) has been determined. To determine the optimal amount of capacity that should
be added during each year, proceed as follows. During year 1, add an amount of capacity x1

that attains the minimum in the (14) equation for f1(100,000). Then the utility will begin year
2 with 90,000 � x1 kwh of capacity. Then, during year 2, x2 kwh of capacity should be added,
where x2 attains the minimum in the (14) equation for f2(90,000 � x1). Continue in this fash-
ion until the optimal value of xT has been determined.

Farmer Jones now possesses $5,000 in cash and 1,000 bushels of wheat. During month t,
the price of wheat is pt. During each month, he must decide how many bushels of wheat
to buy (or sell). There are three restrictions on each month’s wheat transactions: (1) Dur-
ing any month, the amount of money spent on wheat cannot exceed the cash on hand at
the beginning of the month; (2) during any month, he cannot sell more wheat than he has
at the beginning of the month; and (3) because of limited warehouse capacity, the ending
inventory of wheat for each month cannot exceed 1,000 bushels.

Show how dynamic programming can be used to maximize the amount of cash that
farmer Jones has on hand at the end of six months.

Solution Again, we let time be the stage. At the beginning of month t (the present is the beginning of
month 1), farmer Jones must decide by how much to change the amount of wheat on hand.
We define �wt to be the change in farmer Jones’s wheat position during month t: �wt � 0
corresponds to a month t wheat purchase, and �wt 	 0 corresponds to a month t sale of
wheat. To determine an optimal value for �wt, we must know two things: the amount of
wheat on hand at the beginning of month t (call it wt) and the cash on hand at the beginning
of month t, (call this ct). We define ft(ct, wt) to be the maximum cash that farmer Jones can
obtain at the end of month 6, given that farmer Jones has ct dollars and wt bushels of wheat
at the beginning of month t. We now discuss aspects 1–3 of the formulation.

Aspect 1 What are the allowable decisions? If the state at time t is (ct, wt), then restric-
tions 1–3 limit �wt in the following manner:

pt(�wt) 	 ct or �wt 	 �
p
ct

t
�

ensures that we won’t run out of money at the end of month t. The inequality �wt � �wt

ensures that during month t, we will not sell more wheat than we had at the beginning of
month t; and wt � �wt 	 1,000, or �wt 	 1,000 � wt, ensures that we will end month t
with at most 1,000 bushels of wheat. Putting these three restrictions together, we see that

Wheat SaleE X A M P L E 1 0

1 8 . 6 Formulating Dynamic Programming Recursions 993

�wt 	 �wt 	 min ��
p

ct

t

�, 1,000 � wt�
will ensure that restrictions 1–3 are satisfied during month t.

Aspect 2 Since farmer Jones wants to maximize his cash on hand at the end of month 6,
no benefit is earned during months 1 through 5. In effect, during months 1–5, we are do-
ing bookkeeping to keep track of farmer Jones’s position. Then, during month 6, we turn
all of farmer Jones’s assets into cash.

Aspect 3 If the current state is (ct, wt) and farmer Jones changes his month t wheat po-
sition by an amount �wt, what will be the new state at the beginning of month t � 1?
Cash on hand will increase by �(�wt)pt, and farmer Jones’s wheat position will increase
by �wt. Hence, the month t � 1 state will be [ct � (�wt)pt, wt � �wt].

We may now use (11) to develop the appropriate recursion. To maximize his cash po-
sition at the end of month 6, farmer Jones should convert his month 6 wheat into cash by
selling all of it. This means that �w6 � �w6. This leads to the following relation:

f6(c6, w6) � c6 � w6 p6 (15)

Using (11), we obtain for t � 6

ft(ct, wt) � max
�wt

{0 � ft�1[ct � (�wt)pt, wt � �wt]} (16)

where �wt must satisfy

�wt 	 �wt 	 min ��
p
ct

t
�, 1,000 � wt�

We begin our calculations by determining f6(c6, w6) for all states that can possibly oc-
cur during month 6. Then we use (16) to work backward until f1(5,000, 1,000) has been
computed. Next, farmer Jones should choose �w1 to attain the maximum value in the (16)
equation for f1(5,000, 1,000), and a month 2 state of [5,000 � p1(�w1), 1,000 � �w1] will
ensue. Farmer Jones should next choose �w2 to attain the maximum value in the (16)
equation for f2[5,000 � p1(�w1), 1,000 � �w1]. We continue in this manner until the op-
timal value of �w6 has been determined.

Sunco Oil needs to build enough refinery capacity to refine 5,000 barrels of oil per day
and 10,000 barrels of gasoline per day. Sunco can build refinery capacity at four loca-
tions. The cost of building a refinery at site t that has the capacity to refine x barrels of
oil per day and y barrels of gasoline per day is ct(x, y). Use dynamic programming to de-
termine how much capacity should be located at each site.

Solution If Sunco had only one possible refinery site, then the problem would be easy to solve.
Sunco could solve a problem in which there were two possible refinery sites, and finally,
a problem in which there were four refinery sites. For this reason, we let the stage repre-
sent the number of available oil sites. At any stage, Sunco must determine how much oil
and gas capacity should be built at the given site. To do this, the company must know how
much refinery capacity of each type must be built at the available sites. We now define
ft(ot, gt) to be the minimum cost of building ot barrels per day of oil refinery capacity and
gt barrels per day of gasoline refinery capacity at sites t, t � 1, . . . , 4.

To determine f4(o4, g4), note that if only site 4 is available, Sunco must build a refin-
ery at site 4 with o4 barrels of oil capacity and g4 barrels of gasoline capacity. This im-
plies that f4(o4, g4) � c4(o4, g4). For t � 1, 2, 3, we can determine ft(ot, gt) by noting that

Refinery CapacityE X A M P L E 1 1

994 C H A P T E R 1 8 Deterministic Dynamic Programming

if we build a refinery at site t that can refine xt barrels of oil per day and yt barrels of
gasoline per day, then we incur a cost of ct(xt, yt) at site t. Then we will need to build a
total oil refinery capacity of ot � xt and a gas refinery capacity of gt � yt at sites t � 1,
t � 2, . . . , 4. By the principle of optimality, the cost of doing this will be ft�1(ot � xt,
gt � y). Since 0 	 xt 	 ot and 0 	 yt 	 gt must hold, we obtain the following recursion:

ft(ot, gt) � min {ct(ot, gt) � ft�1(ot � xt, gt � yt)} (17)

where 0 	 xt 	 ot and 0 	 yt 	 gt. As usual, we work backward until f1(5,000, 10,000)
has been determined. Then Sunco chooses x1 and y1 to attain the minimum in the (17)
equation for f1 (5,000, 10,000). Then Sunco should choose x2 and y2 that attain the min-
imum in the (17) equation for f2(5,000 � x1, 10,000 � y1). Sunco continues in this fash-
ion until optimal values of x4 and y4 are determined.

The traveling salesperson problem (see Section 9.6) can be solved by using dynamic pro-
gramming. As an example, we solve the following traveling salesperson problem: It’s the
last weekend of the 2004 election campaign, and candidate Walter Glenn is in New York
City. Before election day, Walter must visit Miami, Dallas, and Chicago and then return
to his New York City headquarters. Walter wants to minimize the total distance he must
travel. In what order should he visit the cities? The distances in miles between the four
cities are given in Table 15.

Solution We know that Walter must visit each city exactly once, the last city he visits must be New
York, and his tour originates in New York. When Walter has only one city left to visit, his
problem is trivial: simply go from his current location to New York. Then we can work
backward to a problem in which he is in some city and has only two cities left to visit,
and finally we can find the shortest tour that originates in New York and has four cities
left to visit. We therefore let the stage be indexed by the number of cities that Walter has
already visited. At any stage, to determine which city should next be visited, we need to
know two things: Walter’s current location and the cities he has already visited. The state
at any stage consists of the last city visited and the set of cities that have already been
visited. We define ft(i, S) to be the minimum distance that must be traveled to complete a
tour if the t � 1 cities in the set S have been visited and city i was the last city visited.
We let cij be the distance between cities i and j.

Stage 4 Computations

We note that, at stage 4, it must be the case that S � {2, 3, 4} (why?), and the only pos-
sible states are (2, {2, 3, 4}), (3, {2, 3, 4}), and (4, {2, 3, 4}). In stage 4, we must go
from the current location to New York. This observation yields

Traveling SalespersonE X A M P L E 1 2

TA B L E 15
Distances for a Traveling Salesperson

City

New York Miami Dallas Chicago

1 New York — 1,334 1,559 1,809
2 Miami 1,334 — 1,343 1,397
3 Dallas 1,559 1,343 — 1,921
4 Chicago 1,809 1,397 1,921 —

1 8 . 6 Formulating Dynamic Programming Recursions 995

f4(2, {2, 3, 4}) � c21 � 1,334* (Go from city 2 to city 1)

f4(3, {2, 3, 4}) � c31 � 1,559* (Go from city 3 to city 1)

f4(4, {2, 3, 4}) � c41 � 809*1, (Go from city 4 to city 1)

Stage 3 Computations

Working backward to stage 3, we write

f3(i, S) � min
j�S

and j
1

{cij � f4[j, S � { j}]} (18)

This result follows, because if Walter is now at city i and he travels to city j, he travels a dis-
tance cij. Then he is at stage 4, has last visited city j, and has visited the cities in S � { j}.
Hence, the length of the rest of his tour must be f4(j, S � { j}). To use (18), note that at
stage 3, Walter must have visited {2, 3}, {2, 4}, or {3, 4} and must next visit the non-
member of S that is not equal to 1. We can use (18) to determine f3(�) for all possible states:

f3(2, {2, 3}) � c24 � f4(4, {2, 3, 4}) � 1,397 � 809 � 2,206* (Go from 2 to 4)

f3(3, {2, 3}) � c34 � f4(4, {2, 3, 4}) � 921 � 809 � 1,730* (Go from 3 to 4)

f3(2, {2, 4}) � c23 � f4(3, {2, 3, 4}) � 1,343 � 1,559 � 2,902* (Go from 2 to 3)

f3(4, {2, 4}) � c43 � f4(3, {2, 3, 4}) � 921 � 1,559 � 2,480* (Go from 4 to 3)

f3(3, {3, 4}) � c32 � f4(2, {2, 3, 4}) � 1,343 � 1,334 � 2,677* (Go from 3 to 2)

f3(4, {3, 4}) � c42 � f4(2, {2, 3, 4}) � 1,397 � 1,334 � 2,731* (Go from 4 to 2)

In general, we write, for t � 1, 2, 3,

ft(i, S) � min
j�S

and j
1

{cij � ft�1[j, S � { j}]} (19)

This result follows, because if Walter is at present in city i and he next visits city j, then
he travels a distance cij. The remainder of his tour will originate from city j, and he will
have visited the cities in S � { j}. Hence, the length of the remainder of his tour must be
ft�1(j, S � { j}). Equation (19) now follows.

Stage 2 Computations

At stage 2, Walter has visited only one city, so the only possible states are (2, {2}),
(3, {3}), and (4, {4}). Applying (19), we obtain

f2(2, {2}) � min �
c23 � f3(3, {2, 3}) � 1,343 � 1,730 � 3,073*

(Go from 2 to 3)

c24 � f3(4, {2, 4}) � 1,397 � 2,480 � 3,877

(Go from 2 to 4)

f2(3, {3}) � min �
c34 � f3(4, {3, 4}) � 921 � 2,731 � 3,652

(Go from 3 to 4)

c32 � f3(2, {2, 3}) � 1,343 � 2,206 � 3,549*

(Go from 3 to 2)

f2(4, {4}) � min �
c42 � f3(2, {2, 4}) � 1,397 � 2,902 � 4,299

(Go from 4 to 2)

c43 � f3(3, {3, 4}) � 921 � 2,677 � 3,598*

(Go from 4 to 3)

996 C H A P T E R 1 8 Deterministic Dynamic Programming

Stage 1 Computations

Finally, we are back to stage 1 (where no cities have been visited). Since Walter is cur-
rently in New York and has visited no cities, the stage 1 state must be f1(1, {�}). Apply-
ing (19),

c12 � f2(2, {2}) � 1,334 � 3,073 � 4,407*

(Go from 1 to 2)

f1(1, {�}) � min �c13 � f2(3, {3}) � 1,559 � 3,549 � 5,108

(Go from 1 to 3)

c14 � f2(4, {4}) � 809 � 3,598 � 4,407*

(Go from 1 to 4)

So from city 1 (New York), Walter may go to city 2 (Miami) or city 4 (Chicago). We ar-
bitrarily have him choose to go to city 4. Then he must choose to visit the city that at-
tains f2(4, {4}), which requires that he next visit city 3 (Dallas). Then he must visit the
city attaining f3(3, {3, 4}), which requires that he next visit city 2 (Miami). Then Walter
must visit the city attaining f4(2, {2, 3, 4}), which means, of course, that he must next
visit city 1 (New York). The optimal tour (1–4–3–2–1, or New York–Chicago–Dallas–
Miami–New York) is now complete. The length of this tour is f1(1, {�}) � 4,407. As a
check, note that

New York to Chicago distance � 809 miles

Chicago to Dallas distance � 921 miles

Dallas to Miami distance � 1,343 miles

Miami to New York distance � 1,334 miles

so the total distance that Walter travels is 809 � 921 � 1,343 � 1,334 � 4,407 miles.
Of course, if we had first sent him to city 2, we would have obtained another optimal tour
(1–2–3–4–1) that would simply be a reversal of the original optimal tour.

Computational Difficulties in Using Dynamic Programming

For traveling salesperson problems that are large, the state space becomes very large, and
the branch-and-bound approach outlined in Chapter 9 (along with other branch-and-
bound approaches) is much more efficient than the dynamic programming approach out-
lined here. For example, for a 30-city problem, suppose we are at stage 16 (this means
that 15 cities have been visited). Then it can be shown that there are more than 1 billion
possible states. This brings up a problem that limits the practical application of dynamic
programming. In many problems, the state space becomes so large that excessive com-
putational time is required to solve the problem by dynamic programming. For instance,
in Example 8, suppose that T � 20. It is possible that if no bass were caught during the
first 20 years, then the lake might contain 10,000(1.2)20 � 383,376 bass at the beginning
of year 21. If we view this example as a network in which we need to find the longest
route from the node (1, 10,000) (representing year 1 and 10,000 bass in the lake) to some
stage 21 node, then stage 21 would have 383,377 nodes. Even a powerful computer would
have difficulty solving this problem. Techniques to make problems with large state spaces
computationally tractable are discussed in Bersetkas (1987) and Denardo (1982).

1 8 . 6 Formulating Dynamic Programming Recursions 997

Nonadditive Recursions

The last two examples in this section differ from the previous ones in that the recursion
does not represent ft(i) as the sum of the cost (or reward) incurred during the current pe-
riod and future costs (or rewards) incurred during future periods.

Joe Cougar needs to drive from city 1 to city 10. He is no longer interested in minimiz-
ing the length of his trip, but he is interested in minimizing the maximum altitude above
sea level that he will encounter during his drive. To get from city 1 to city 10, he must
follow a path in Figure 10. The length cij of the arc connecting city i and city j represents
the maximum altitude (in thousands of feet above sea level) encountered when driving
from city i to city j. Use dynamic programming to determine how Joe should proceed
from city 1 to city 10.

Solution To solve this problem by dynamic programming, note that for a trip that begins in city i
and goes through stages t, t � 1, . . . , 5, the maximum altitude that Joe encounters will
be the maximum of the following two quantities: (1) the maximum altitude encountered
on stages t � 1, t � 2, . . . , 5 or (2) the altitude encountered when traversing the arc that
begins in stage t. Of course, if we are in a stage 4 state, quantity 1 does not exist.

After defining ft(i) as the smallest maximum altitude that Joe can encounter in a trip
from city i in stage t to city 10, this reasoning leads us to the following recursion:

f4(i) � ci,10{max[cij, ft�1}(j)]} (t � 1, 2, 3) (20)

ft(i) � min
j

{max[cij, ft�1(j)]} (t � 1, 2, 3)

where j may be any city such that there is an arc connecting city i and city j.
We first compute f4(7), f4(8), and f4(9) and then use (20) to work backward until f1(1)

has been computed. We obtain the following results:

f4(7) � 13* (Go from 7 to 10)

f4(8) � 8* (Go from 8 to 10)

f4(9) � 9* (Go from 9 to 10)

max [c57, f4(7)] � 13 (Go from 5 to 7)

f3(5) � min �max [c58, f4(8)] � 8* (Go from 5 to 8)

max [c59, f4(9)] � 10 (Go from 5 to 9)

Minimax Shortest RouteE X A M P L E 1 3

Stage 1 Stage 5

Stage 2

9

10 7

7

6
9

8

7
10

11

13

7

7

8
6

8

Stage 3 Stage 4

8

9

5 7

1031

4

2

6

F I G U R E 10
Joe’s Trip

(Altitudes Given)

998 C H A P T E R 1 8 Deterministic Dynamic Programming

max [c67, f4(7)] � 13 (Go from 6 to 7)

f3(6) � min �max [c68, f4(8)] � 8* (Go from 6 to 8)

max [c69, f4(9)] � 9 (Go from 6 to 9)

f2(2) � max [c25, f3(5)] � 9* (Go from 2 to 5)

f2(3) � max [c35, f3(5)] � 8* (Go from 3 to 5)

f2(4) � min �max [c45, f3(5)] � 11 (Go from 4 to 5)

max [c46, f3(6)] � 8* (Go from 4 to 6)

max [c12, f2(2)] � 10 (Go from 1 to 2)

f1(1) � min �max [c13, f2(3)] � 8* (Go from 1 to 3)

max [c14, f2(4)] � 8* (Go from 1 to 4)

To determine the optimal strategy, note that Joe can begin by going from city 1 to city 3
or from city 1 to city 4. Suppose Joe begins by traveling to city 3. Then he should choose
the arc attaining f2(3), which means he should next travel to city 5. Then Joe must choose
the arc that attains f3(5), driving next to city 8. Then, of course, he must drive to city 10.
Thus, the path 1–3–5–8–10 is optimal, and Joe will encounter a maximum altitude equal
to f1(1) � 8,000 ft. The reader should verify that the path 1–4–6–8–10 is also optimal.

Glueco is planning to introduce a new product in three different regions. Current estimates
are that the product will sell well in each region with respective probabilities .6, .5, and
.3. The firm has available two top sales representatives that it can send to any of the three
regions. The estimated probabilities that the product will sell well in each region when 0,
1, or 2 additional sales reps are sent to a region are given in Table 16. If Glueco wants to
maximize the probability that its new product will sell well in all three regions, then where
should it assign sales representatives? You may assume that sales in the three regions are
independent.

Solution If Glueco had just one region to worry about and wanted to maximize the probability that
the new product would sell in that region, then the proper strategy would be clear: Assign
both sales reps to the region. We could then work backward and solve a problem in which
Glueco’s goal is to maximize the probability that the product will sell in two regions. Fi-
nally, we could work backward and solve a problem with three regions. We define ft(s) as
the probability that the new product will sell in regions t, t � 1, . . . , 3 if s sales reps are
optimally assigned to these regions. Then

f3(2) � .7 (Assign 2 sales reps to region 3)

f3(1) � .55 (Assign 1 sales rep to region 3)

f3(0) � .3 (Assign 0 sales reps to region 3)

Sales AllocationE X A M P L E 1 4

TA B L E 16
Relation between Regional Sales and Sales Representatives

No. of Additional
Probability of Selling Well

Sales Representatives Region 1 Region 2 Region 3

0 .65 .55 .35
1 .85 .75 .55
2 .85 .85 .75

1 8 . 6 Formulating Dynamic Programming Recursions 999

Also, f1(2) will be the maximum probability that the product will sell well in all three re-
gions. To develop a recursion for f2(�) and f1(�), we define ptx to be the probability that
the new product sells well in region t if x sales reps are assigned to region t. For exam-
ple, p21 � .7. For t � 1 and t � 2, we then write

ft(s) � max
x

{ptx ft�1(s � x)} (21)

where x must be a member of {0, 1, . . . , s}. To justify (21), observe that if s sales reps
are available for regions t, t � 1, . . . , 3 and x sales reps are assigned to region t, then

ptx � probability that product sells in region t

ft�1(s � x) � probability that product sells well in regions t � 1, . . . , 3

Note that the sales in each region are independent. This implies that if x sales reps are
assigned to region t, then the probability that the new product sells well in regions t,
t � 1, . . . , 3 is ptx ft�1(s � x). We want to maximize this probability, so we obtain (21).
Applying (21) yields the following results:

(.5)f3(2 � 0) � .35

(Assign 0 sales reps to region 2)

f2(2) � max �(.7)f3(2 � 1) � .385*

(Assign 1 sales rep to region 2)

(.85)f3(2 � 2) � .255

(Assign 2 sales reps to region 2)

Thus, f2(2) � .385, and 1 sales rep should be assigned to region 2.

(.5)f3(1 � 0) � .275*

f2(1) � max �(Assign 0 sales reps to region 2)

(.7)f3(1 � 1) � .21

(Assign 1 sales rep to region 2)

Thus, f2(1) � .275, and no sales reps should be assigned to region 2.

f2(0) � (.5)f3(0 � 0) � .15*o region 2)

f2(0) � (Assign 0 sales reps to region 2)

Finally, we are back to the original problem, which is to find f1(2). Equation (21) yields

(.6)f2(2 � 0) � .231*

(Assign 0 sales reps to region 1)

(.8)f2(2 � 1) � .220
f1(2) � max �(Assign 1 sales rep to region 1)

(.85)f2(2 � 2) � .1275

(Assign 2 sales reps to region 1)

Thus, f1(2) � .231, and no sales reps should be assigned to region 1. Then Glueco needs
to attain f2(2 � 0), which requires that 1 sales rep be assigned to region 2. Glueco must
next attain f3(2 � 1), which requires that 1 sales rep be assigned to region 3. In summary,
Glueco can obtain a .231 probability of the new product selling well in all three regions
by assigning 1 sales rep to region 2 and 1 sales rep to region 3.

1000 C H A P T E R 1 8 Deterministic Dynamic Programming

1 At the beginning of year 1, Sunco Oil owns i0 barrels of
oil reserves. During year t(t � 1, 2, . . . , 10), the following
events occur in the order listed: (1) Sunco extracts and
refines x barrels of oil reserves and incurs a cost c(x): (2)
Sunco sells year t’s extracted and refined oil at a price of pt

dollars per barrel; and (3) exploration for new reserves
results in a discovery of bt barrels of new reserves.

Sunco wants to maximize sales revenues less costs over
the next 10 years. Formulate a dynamic programming
recursion that will help Sunco accomplish its goal. If Sunco
felt that cash flows in later years should be discounted, how
should the formulation be modified?

2 At the beginning of year 1, Julie Ripe has D dollars (this
includes year 1 income). During each year, Julie earns i dollars
and must determine how much money she should consume
and how much she should invest in Treasury bills. During a
year in which Julie consumes d dollars, she earns a utility of
ln d. Each dollar invested in Treasury bills yields $1.10 in cash
at the beginning of the next year. Julie’s goal is to maximize
the total utility she earns during the next 10 years.

a Why might ln d be a better indicator of Julie’s util-
ity than a function such as d2?
b Formulate a dynamic programming recursion that
will enable Julie to maximize the total utility she re-
ceives during the next 10 years. Assume that year t rev-
enue is received at the beginning of year t.

3 Assume that during minute t (the current minute is
minute 1), the following sequence of events occurs: (1) At
the beginning of the minute, xt customers arrive at the cash
register; (2) the store manager decides how many cash
registers should be operated during the current minute;
(3) if s cash registers are operated and i customers are
present (including the current minute’s arrivals), c(s, i)
customers complete service; and (4) the next minute begins.

A cost of 10¢ is assessed for each minute a customer
spends waiting to check out (this time includes checkout
time). Assume that it costs c(s) cents to operate s cash
registers for 1 minute. Formulate a dynamic programming
recursion that minimizes the sum of holding and service
costs during the next 60 minutes. Assume that before the
first minute’s arrivals, no customers are present and that
holding cost is assessed at the end of each minute.

4 Develop a dynamic programming formulation of the
CSL Computer problem of Section 3.12.

5 To graduate from State University, Angie Warner needs
to pass at least one of the three subjects she is taking this
semester. She is now enrolled in French, German, and
statistics. Angie’s busy schedule of extracurricular activities
allows her to spend only 4 hours per week on studying.
Angie’s probability of passing each course depends on the
number of hours she spends studying for the course (see
Table 17). Use dynamic programming to determine how
many hours per week Angie should spend studying each
subject. (Hint: Explain why maximizing the probability of

passing at least one course is equivalent to minimizing the
probability of failing all three courses.)

6 E.T. is about to fly home. For the trip to be successful,
the ship’s solar relay, warp drive, and candy maker must all
function properly. E.T. has found three unemployed actors
who are willing to help get the ship ready for takeoff. Table
18 gives, as a function of the number of actors assigned to
repair each component, the probability that each component
will function properly during the trip home. Use dynamic
programming to help E.T. maximize the probability of
having a successful trip home.

7 Farmer Jones is trying to raise a prize steer for the
Bloomington 4-H show. The steer now weighs w0 pounds.
Each week, farmer Jones must determine how much food to
feed the steer. If the steer weighs w pounds at the beginning
of a week and is fed p pounds of food during a week, then
at the beginning of the next week, the steer will weigh
g(w, p) pounds. It costs farmer Jones c(p) dollars to feed the
steer p pounds of food during a week. At the end of the 10th
week (or equivalently, the beginning of the 11th week), the
steer may be sold for $10/lb. Formulate a dynamic
programming recursion that can be used to determine how
farmer Jones can maximize profit from the steer.

Group B

8 MacBurger has just opened a fast-food restaurant in
Bloomington. Currently, i0 customers frequent MacBurger
(we call these loyal customers), and N � i0 customers frequent
other fast-food establishments (we call these nonloyal
customers). At the beginning of each month, MacBurger must
decide how much money to spend on advertising. At the end

P R O B L E M S
Group A

TA B L E 17

Hours of Study
Probability of Passing Course

per Week French German Statistics

0 .20 .25 .10
1 .30 .30 .30
2 .35 .33 .40
3 .38 .35 .44
4 .40 .38 .50

TA B L E 18

No. of Actors Assigned to Component

Component 0 1 2 3

Warp drive .30 .55 .65 .95
Solar relay .40 .50 .70 .90
Candy maker .45 .55 .80 .98

1 8 . 7 The Wagner-Whitin Algorithm and the Silver-Meal Heuristic 1001

of a month in which MacBurger spends d dollars on
advertising, a fraction p(d) of the loyal customers become
nonloyal customers, and a fraction q(d) of the nonloyal
customers become loyal customers. During the next 12
months, MacBurger wants to spend D dollars on advertising.
Develop a dynamic programming recursion that will enable
MacBurger to maximize the number of loyal customers the
company will have at the end of month 12. (Ignore the
possibility of a fractional number of loyal customers.)

9 Public Service Indiana (PSI) is considering five possible
locations to build power plants during the next 20 years. It will
cost ci dollars to build a plant at site i and hi dollars to operate
a site i plant for a year. A plant at site i can supply ki kilowatt-
hours (kwh) of generating capacity. During year t, dt kwh of
generating capacity are required. Suppose that at most one
plant can be built during a year, and if it is decided to build a
plant at site i during year t, then the site i plant can be used to
meet the year t (and later) generating requirements. Initially,
PSI has 500,000 kwh of generating capacity available.
Formulate a recursion that PSI could use to minimize the sum
of building and operating costs during the next 20 years.

10 During month t, a firm faces a demand for dt units of
a product. The firm’s production cost during month t consists
of two components. First, for each unit produced during
month t, the firm incurs a variable production cost of ct.
Second, if the firm’s production level during month t � 1 is
xt�1 and the firm’s production level during month t is xt,
then during month t, a smoothing cost of 5�xt � xt�1� will
be incurred (see Section 16.12 for an explanation of
smoothing costs). At the end of each month, a holding cost
of ht per unit is incurred. Formulate a recursion that will
enable the firm to meet (on time) its demands over the next
12 months. Assume that at the beginning of the first month,
20 units are in inventory and that last month’s production
was 20 units. (Hint: The state during each month must
consist of two quantities.)

11 The state of Transylvania consists of three cities with
the following populations: city 1, 1.2 million people; city 2,
1.4 million people; city 3, 400,000 people. The Transylvania
House of Representatives consists of three representatives.
Given proportional representation, city 1 should have d1 �
(�

1
3
.2
�) � 1.2 representatives; city 2 should have d2 � 1.4

representatives; and city 3 should have d3 � 0.40
representative. Each city must receive an integral number of
representatives, so this is impossible. Transylvania has
therefore decided to allocate xi representatives to city i,
where the allocation x1, x2, x3 minimizes the maximum
discrepancy between the desired and actual number of
representatives received by a city. In short, Transylvania
must determine x1, x2, and x3 to minimize the largest of the
following three numbers: �x1 � d1�, �x2 � d2�, �x3 � d3�. Use
dynamic programming to solve Transylvania’s problem.

12 A job shop has four jobs that must be processed on a
single machine. The due date and processing time for each
job are given in Table 19. Use dynamic programming to
determine the order in which the jobs should be done so as
to minimize the total lateness of the jobs. (The lateness of
a job is simply how long after the job’s due date the job is
completed; for example, if the jobs are processed in the
given order, then job 3 will be 2 days late, job 4 will be 4
days late, and jobs 1 and 2 will not be late.)

18.7 The Wagner–Whitin Algorithm and the Silver–Meal Heuristic†

The inventory example of Section 18.3 is a special case of the dynamic lot-size model.

Description of Dynamic Lot-Size Model

1 Demand dt during period t(t � 1, 2, . . . , T) is known at the beginning of period 1.

2 Demand for period t must be met on time from inventory or from period t production.
The cost c(x) of producing x units during any period is given by c(0) � 0, and for x � 0,
c(x) � K � cx, where K is a fixed cost for setting up production during a period, and c
is the variable per-unit cost of production.

3 At the end of period t, the inventory level it is observed, and a holding cost hit is in-
curred. We let i0 denote the inventory level before period 1 production occurs.

4 The goal is to determine a production level xi for each period t that minimizes the to-
tal cost of meeting (on time) the demands for periods 1, 2, . . . , T.

TA B L E 19

Processing Due Date
Time (Days from

Job (Days) Now)

1 2 14
2 4 14
3 6 10
4 8 16

†This section covers topics that may be omitted with no loss of continuity.

1002 C H A P T E R 1 8 Deterministic Dynamic Programming

L E M M A 2

L E M M A 1

5 There is a limit ct placed on period t’s ending inventory.

6 There is a limit rt placed on period t’s production.

In this section, we consider these first four points. We let xt � period t production. Period
t production can be used to meet period t demand.

E X A M P L E 1 5

We now determine an optimal production schedule for a five-period dynamic lot-size
model with K � $250, c � $2, h � $1, d1 � 220, d2 � 280, d3 � 360, d4 � 140, and
d5 � 270. We assume that the initial inventory level is zero. The solution to this example
is given later in this section.

Discussion of the Wagner–Whitin Algorithm

If the dynamic programming approach outlined in Section 18.3 were used to find an op-
timal production policy for Example 15, we would have to consider the possibility of pro-
ducing any amount between 0 and d1 � d2 � d3 � d4 � d5 � 1,270 units during period
1. Thus, it would be possible for the period 2 state (period 2’s entering inventory) to be
0, 1, . . . , 1,270 � d1 � 1,050, and we would have to determine f2(0), f2(1), . . . , f2(1,050).
Using the dynamic programming approach of Section 18.3 to find an optimal production
schedule for Example 15 would therefore require a great deal of computational effort. For-
tunately, however, Wagner and Whitin (1958) have developed a method that greatly sim-
plifies the computation of optimal production schedules for dynamic lot-size models.
Lemmas 1 and 2 are necessary for the development of the Wagner–Whitin algorithm.

Suppose it is optimal to produce a positive quantity during a period t. Then for some
j � 0, 1, . . . , T � t, the amount produced during period t must be such that after
period t’s production, a quantity dt � dt�1 � � � � � dt�j will be in stock. In other
words, if production occurs during period t, we must (for some j) produce an amount
that exactly suffices to meet the demands for periods t, t � 1, . . . , t � j.

Proof If the lemma is false, then for some t, some j � 0, 1, . . . , T� t � 1, and
some x satisfying 0 � x � dt�j�1, period t production must bring the stock level to
dt � dt�1 � � � � � dt�j � x, and at the beginning of period t � j � 1, our inven-
tory level would be x � dt�j�1. Thus, production must occur during period t � j �
1. By deferring production of x units from period t to period t � j � 1 (with all
other production levels unchanged), we save h(j � 1)x in holding costs while in-
curring no additional setup costs (because production is already occurring during
period t � j � 1). Thus, it cannot have been optimal to bring our period t stock level
to dt � dt�1 � � � � � dt�j � x. This contradiction proves the lemma.

If it is optimal to produce anything during period t, then it�1 � dt. In other words,
production cannot occur during period t unless there is insufficient stock to meet pe-
riod t demand.

Dynamic Lot-Size Model

1 8 . 7 The Wagner-Whitin Algorithm and the Silver-Meal Heuristic 1003

Proof If the lemma is false, there must be an optimal policy that (for some t) has
xt � 0 and it�1 � dt. If this is the case, then by deferring the period t production
of xt units to period t � 1, we save hxt in holding costs and possibly K (if the opti-
mal policy produces during period t � 1) in setup costs. Thus, any production
schedule having xt � 0 and it�1 � dt cannot be optimal.

Lemma 2 shows that no production will occur until the first period t for which it�1 �
dt, so production must occur during period t (or else period t’s demand would not be met
on time). Lemma 1 now implies that for some j � 0, 1, . . . , T � t, period t production
will be such that after period t’s production, on-hand stock will equal dt � dt�1 � � � � �
dt�j. Then Lemma 2 implies that no production can occur until period t � j � 1. Since
the entering inventory level for period t � j � 1 will equal zero, production must occur
during period t � j � 1. During period t � j � 1, Lemma 1 implies that period t � j �
1 production will (for some k) equal dt�j�1 � dt�j�2 � � � � � dt�j�k units. Then period
t � j � k � 1 will begin with zero inventory, and production again occurs, and so on.
With the possible exception of the first period, production will occur only during periods
in which beginning inventory is zero, and during each period in which beginning inven-
tory is zero (and dt
 0), production must occur.

Using this insight, Wagner and Whitin developed a recursion that can be used to de-
termine an optimal production policy. We assume that the initial inventory level is zero.
(See Problem 1 at the end of this section if this is not the case.) Define ft as the minimum
cost incurred during periods t, t � 1, . . . , T, given that at the beginning of period t, the
inventory level is zero. Then f1, f2, . . . , fT must satisfy

ft � min (ctj � ft�j�1) (22)
j�0, 1, 2,..., T�t

where fT�1 � 0 and ctj is the total cost incurred during periods t, t � 1, . . . , t � j if pro-
duction during period t is exactly sufficient to meet demands for periods t, t � 1, . . . ,
t � j. Thus,

ctj � K � c(dt � dt�1 � � � � � dt�j) � h[jdt�j � (j � 1)dt�j�1 � � � � � dt�1]

where K is the setup cost incurred during period t, c(dt � dt�1 � � � � � dt�j) is the vari-
able production cost incurred during period t, and h[jdt�j � (j � 1)dt�j�1 � � � � � dt�1]
is the holding cost incurred during periods t, t � 1, . . . , t � j. For example, an amount
dt�j of period t production will be held in inventory for j periods (during periods t, t �
1, . . . , t � j �1), thereby incurring a holding cost of hjdt�j.

To find an optimal production schedule by the Wagner–Whitin algorithm, begin by us-
ing (22) to find fT. Then use (22) to compute fT�1, fT�2, . . . , f1. Once f1 has been deter-
mined, an optimal production schedule may be easily obtained.

E X A M P L E 1 5

Solution To illustrate the Wagner–Whitin algorithm, we find an optimal production schedule for
Example 15. The computations follow.

f6 � 0

f5 � 250 � 2(270) � f6 � 790* (Produce for period 5)

If we begin period 5 with zero inventory, we should produce enough during period 5 to
meet period 5 demand.

Dynamic Lot-Size Model (continued)

1004 C H A P T E R 1 8 Deterministic Dynamic Programming

f4 � min �
If we begin period 4 with zero inventory, we should produce enough during period 4 to
meet the demand for period 4.

f3 � min �
If we begin period 3 with zero inventory, we should produce enough during period 3 to
meet the demand for periods 3 and 4.

f2 � min �
If we begin period 2 with zero inventory, we should produce enough during period 2 to
meet the demand for period 2.

f1 � min�
If we begin period 1 with zero inventory, it is optimal to produce d1 � 220 units during
period 1; then we begin period 2 with zero inventory. Since f2 is attained by producing
period 2’s demand, we should produce d2 � 280 units during period 2; then we enter pe-
riod 3 with zero inventory. Since f3 is attained by meeting the demands for periods 3 and
4, we produce d3 � d4 � 500 units during period 3; then we enter period 5 with zero in-
ventory and produce d5 � 270 units during period 5. The optimal production schedule
will incur at total cost of f1 � $3,680.

250 � 2(220) � f2 � 3,680*

(Produce for period 1)

250 � 2(220 � 280) � 280 � f3 � 3,710

(Produce for periods 1, 2)

250 � 2(220 � 280 � 360) � 280 � 2(360) � f4 � 4,290

(Produce for periods 1, 2, 3)

250 � 2(220 � 280 � 360 � 140) � 280 � 2(360) � 3(140) � f5 � 4,460

(Produce for periods 1, 2, 3, 4)

250 � 2(220 � 280 � 360 � 140 � 270) � 280

� 2(360) � 3(140) � 4(270) � f6 � 5,290

(Produce for periods 1, 2, 3, 4, 5)

250 � 2(280) � f3 � 2,990*

(Produce for period 2)

250 � 2(280 � 360) � 360 � f4 � 3,210

(Produce for periods 2, 3)

250 � 2(280 � 360 � 140) � 360 � 2(140) � f5 � 3,240

(Produce for periods 2, 3, 4)

250 � 2(280 � 360 � 140 � 270) � 360 � 2(140) � 3(270) � f6 � 3,800

(Produce for periods 2, 3, 4, 5)

250 � 2(360) � f4 � 2,290

(Produce for period 3)

250 � 2(360 � 140) � 140 � f5 � 2,180*

(Produce for periods 3, 4)

250 � 2(360 � 140 � 270) � 140 � 2(270) � f6 � 2,470

(Produce for periods 3, 4, 5)

250 � 2(140) � f5 � 1,320*

(Produce for period 4)

250 � 2(140 � 270) � 270 � f6 � 1,340

(Produce for periods 4, 5)

For Example 15, any optimal production schedule must produce exactly d1 � d2 � d3 �
d4 � d5 � 1,270 units, incurring variable production costs of 2(1,270) � $2,540. Thus,
in computing the optimal production schedule, we may always ignore the variable pro-
duction costs. This substantially simplifies the calculations.

The Silver–Meal Heuristic

The Silver–Meal (S–M) heuristic involves less work than the Wagner–Whitin algorithm
and can be used to find a near-optimal production schedule. The S–M heuristic is based
on the fact that our goal is to minimize average cost per period (for the reasons stated,
variable production costs may be ignored). Suppose we are at the beginning of period 1
and are trying to determine how many periods of demand should be satisfied by period
1’s production. During period 1, if we produce an amount sufficient to meet demand for
the next t periods, then a cost of TC(t) � K � HC(t) will be incurred (ignoring variable
production costs). Here, HC(t) is the holding cost incurred during the next t periods (in-
cluding the current period) if production during the current period is sufficient to meet
demand for the next t periods.

Let AC(t) � �
TC

t
(t)
� be the average per-period cost incurred during the next t periods.

Since �
1
t
� is a decreasing convex function of t, as t increases, �

K
t
� decreases at a decreasing

rate. In most cases, �HC
t
(t)
� tends to be an increasing function of t (see Problem 4 at the end

of this section). Thus, in most situations, an integer t* can be found such that for t � t*,
AC(t � 1) 	 AC(t) and AC(t* � 1) � AC(t*). The S–M heuristic recommends that pe-
riod 1’s production be sufficient to meet the demands for periods 1, 2, . . . , t* (if no t*
exists, period 1 production should satisfy the demand for periods 1, 2, . . . , T). Since t*
is a local (and perhaps a global) minimum for AC(t), it seems reasonable that producing
d1 � d2 � � � � � dt* units during period 1 will come close to minimizing the average per-
period cost incurred during periods 1, 2, . . . , t*. Next we apply the S–M heuristic while
considering period t* � 1 as the initial period. We find that during period t* � 1, the de-
mand for the next t1* periods should be produced. Continue in this fashion until the de-
mand for period T has been produced.

To illustrate, we apply the S–M heuristic to Example 15. We have

TC(1) � 250 AC(1) � �
25
1
0

� � 250

TC(2) � 250 � 280 � 530 AC(2) � �
53
2
0

� � 265

Since AC(2) � AC(1), t* � 1, and the S–M heuristic dictates that we produce d1 � 220
units during period 1. Then

TC(1) � 250 AC(1) � �
25
1
0

� � 250

TC(2) � 250 � 360 � 610 AC(2) � �
61
2
0

� � 305

Since AC(2) � AC(1), the S–M heuristic recommends producing d2 � 280 units during
period 2. Then

TC(1) � 250 AC(1) � �
25
1
0

� � 250

TC(2) � 250 � 140 � 390 AC(2) � �
39
2
0

� � 195

1 8 . 7 The Wagner-Whitin Algorithm and the Silver-Meal Heuristic 1005

1006 C H A P T E R 1 8 Deterministic Dynamic Programming

TC(3) � 250 � 2(270) � 140 � 930 AC(3) � �
93
3
0

� � 310

Since AC(3) � AC(2), period 3 production should meet the demand for the next two pe-
riods (periods 3 and 4). During period 3, we should produce d3 � d4 � 500 units. This
brings us to period 5. Period 5 is the final period, so d5 � 270 units should be produced
during period 5.

For Example 15 (and many other dynamic lot-size problems), the S–M heuristic yields
an optimal production schedule. In extensive testing, the S–M heuristic usually yielded
a production schedule costing less than 1% above the optimal policy obtained by the
Wagner–Whitin algorithm (see Peterson and Silver (1998)).

P R O B L E M S
Group A

1 For Example 15, suppose we had an inventory of 200
units. What would be the optimal production schedule?
What if the initial inventory were 400 units?

2 Use the Wagner–Whitin and Silver–Meal methods to
find production schedules for the following dynamic lot-
size problem: K � $50, h � $0.40, d1 � 10, d2 � 60, d3 �
20, d4 � 140, d5 � 90.

3 Use the Wagner–Whitin and Silver–Meal methods to
find production schedules for the following dynamic lot-

size problem: K � $30, h � $1, d1 � 40, d2 � 60, d3 �
10, d4 � 70, d5 � 20.

Group B

4 Explain why HC(t)/t tends to be an increasing funct-
ion of t.

18.8 Using Excel to Solve Dynamic Programming Problems†

In earlier chapters, we have seen that any LP problem can be solved with LINDO or
LINGO, and any NLP can be solved with LINGO. Unfortunately, no similarly user-
friendly package can be used to solve dynamic programming problems. LINGO can be
used to solve DP problems, but student LINGO can only handle a very small problem.
Fortunately, Excel can often be used to solve DP problems. Our three illustrations solve
a knapsack problem (Example 6), a resource-allocation problem (Example 5), and an in-
ventory problem (Example 4).

Solving Knapsack Problems on a Spreadsheet

Recall the knapsack problem of Example 6. The question is how to (using three types of
items) fill a 10-lb knapsack and obtain the maximum possible benefit. Recall that g(w) �
maximum benefit that can be obtained from a w-lb knapsack. Recall that

g(w) � max
j

{bj � g(w � wj)} (8)

where bj � benefit from a type j item and wj � weight of a type j item.
In each row of the spreadsheet (see Figure 11 or file Dpknap.xls) we compute g(w) for

various values of w. We begin by entering g(0) � g(1) � g(2) � 0 and g(3) � 7; [g(3) �
7 follows because a 3-lb item is the only item that will fit in a 3-lb knapsack]. The

†This section covers topics that may be omitted with no loss of continuity.

Dpknap.xls

1 8 . 8 Using Excel to Solve Dynamic Programming Problems 1007

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0

KNAPSACK ITEM1 ITEM2 ITEM3 g(SIZE) FIGURE11
SIZE KNAPSACK

0 0 PROBLEM
1 0
2 0
3 7
4 11 7 -10000 11
5 11 7 12 12
6 11 14 12 14
7 18 18 12 18
8 22 19 19 22
9 23 21 23 23

10 25 25 24 25

A A B C D E F G

F I G U R E 11
Knapsack Problem

columns labeled ITEM1, ITEM2, and ITEM3 correspond to the terms j � 1, 2, 3, re-
spectively, in (8). Thus, in the ITEM1 column, we should enter a formula to compute
b1 � g(w � w1); in the ITEM2 column, we should enter a formula to compute b2 � g(w �
w2); in the ITEM3 column, we should enter a formula to compute b3 � g(w � w3). The
only exception to this occurs when a wj-lb item will not fit in a w-lb knapsack. In this sit-
uation, we enter a very negative number (such as 10,000) to ensure that a wj-lb item will
not be considered.

More specifically, in row 7, we want to compute g(4). To do this, we enter the follow-
ing formulas:

B7: 11 � E3 [This is b1 � g(4 � w1)]

C7: 7 � E4 [This is b2 � g(4 � w2)]

D7: �10,000 (This is because a 5-lb item will not fit in a 4-lb knapsack)

In E7, we compute g(4) by entering the formula �MAX(B7:D7). In row 8, we com-
pute g(5) by entering the following formulas:

B8: 11 � E4

C8: 7 � E5

D8: 12 � E3

To compute g(5), we enter �MAX(B8:D8) in E8. Now comes the fun part! Simply
copy the formulas from the range B8:E8 to B8:E13. Then g(10) will be computed in E13.
We see that g(10) � 25. Because both item 1 and item 2 attain g(10), we may begin fill-
ing a knapsack with a Type 1 or Type 2 item. We choose to begin with a Type 1 item. This
leaves us with 10 � 4 � 6 lb to fill. From row 9 we find that g(6) � 14 is attained by a
Type 2 item. This leaves us with 6 � 3 � 3 lb to fill. We also use a Type 2 item to attain
g(3) � 7. This leaves us with 0 lb. Thus, we conclude that we can obtain 25 units of ben-
efit by filling a 10-lb knapsack with two Type 2 items and one Type 1 item.

1008 C H A P T E R 1 8 Deterministic Dynamic Programming

By the way, if we had been interested in filling a 100-lb knapsack, we would have
copied the formulas from B8:E8 to B8:E103.

Solving a General Resource-Allocation
Problem on a Spreadsheet

Solving a nonknapsack resource-allocation problem on a spreadsheet is more difficult. To
illustrate, consider Example 5 in which we have $6,000 to allocate between three invest-
ments. Define ft(d) � maximum NPV obtained from investments t, . . . , 3 given that d (in
thousands) dollars are available for investments t, . . . , 3. Then we may write

ft(d) � max
0 	 x 	 d

{rt(x) � ft�1(d � x)} (10)

where f4(d) � 0(d � 0, 1, 2, 3, 4, 5, 6), rt(x) � NPV obtained if x (in thousands) dollars
are invested in investment t, and the maximization in (10) is only taken over integral val-
ues for d. Our subsequent discussion will be simplified if we define Jt(d, x) � rt(x) �
ft�1(d � x) and rewrite (10) as

ft(d) � max
0 	 x 	 d

{Jt(d, x)} (10�)

We begin the construction of the spreadsheet (Figure 12 and file Dpresour.xls) by en-
tering the rt(x) in A1�H4. For example, r2(3) � 16 is entered in E3. In rows 18–20, we
have set up the computations to compute the Jt(d, x). These computations require using
the Excel �HLOOKUP command to look up the values of rt(x) (in rows 2–4) and
ft�1(d � x) (in rows 11–14). For example, to compute J3(3, 1), we enter the following
formula in I18:

�HLOOKUP(I$17,$B$1:$H$4,$A18�1)

� HLOOKUP(I$16-I$17,B10:H14,$A18�1)

The portion �HLOOKUP(I$17,$B$1:$H$4,$A18�1) of the formula in cell I18 finds
the column in B1:H4 whose first entry matches I17. Then we pick off the entry in row
A18 � 1 of that column. This returns r3(1) � 9. Note that H stands for horizontal lookup.
The portion HLOOKUP(I$16-I$17,b10:h14,$A18�1) finds the column in B10:H14
whose first entry matches I16-I17. Then we pick off the entry in row A18 � 1 of that col-
umn. This yields f4(3 � 1) � 0.

Dpresour.xls

A B C D E F G H I J K L M
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0

REWARD 0 1 2 3 4 5 6
PERIOD3 0 9 13 17 21 25 29
PERIOD2 0 10 13 16 19 22 25
PERIOD1 0 9 16 23 30 37 44

FIGURE 12
RESOURCE ALLOCATION

VALUE 0 1 2 3 4 5 6
PERIOD4 0 0 0 0 0 0 0
PERIOD3 0 9 13 17 21 25 29
PERIOD2 0 10 19 23 27 31 35
PERIOD1 0 10 19 28 35 42 49

d 0 1 1 2 2 2 3 3 3 3 4 4
x 0 0 1 0 1 2 0 1 2 3 0 1

1 0 0 9 0 9 13 0 9 13 17 0 9
2 0 9 10 13 19 13 17 23 22 16 21 27
3 0 10 9 19 19 16 23 28 26 23 27 32

A

F I G U R E 12
Resource Allocation

1 8 . 8 Using Excel to Solve Dynamic Programming Problems 1009

We now copy any of the Jt(d, x) formulas (such as the one in I18) to the range
B18:AC20.

The ft(d) are computed in AD18�AJ20. We begin by manually entering in AD18:AJ18
the formulas used to compute f3(0), f3(1), . . . , f3(6). These formulas are as follows:

AD18: 0 (Computes f3(0))

AE18: �MAX(C18:D18) (Computes f3(1))

AF18: �MAX(E18:G18) (Computes f3(2))

AG18: �MAX(H18:K18) (Computes f3(3))

AH18: �MAX(L18:P18) (Computes f3(4))

AI18: �MAX(Q18:V18) (Computes f3(5))

AJ18: �MAX(W18:AC18) (Computes f3(6))

We now copy these formulas from the range AD18:AJ18 to the range AD18:AJ20.
For our spreadsheet to work we must be able to compute the Jt(d, x) by looking up the

appropriate value of ft(d) in rows 11–14. Thus, in B11:H11, we enter a zero in each cell
[because f4(d) � 0 for all d]. In B12, we enter �AD18 [this is the cell in which f3(0) is
computed]. We now copy this formula to the range B12�H14.

Note that rows 11–14 of our spreadsheet are defined in terms of rows 18–20, and rows
18–20 are defined in terms of rows 11–14. This creates circularity or circular references
in our spreadsheet. To resolve the circular references in this (or any) spreadsheet, simply
select Tools, Options, Calculations and select the Iteration box. This will cause Excel to
resolve all circular references until the circularity is resolved.

N O P Q R S T U V W X Y Z
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0

4 4 4 5 5 5 5 5 5 6 6 6 6
2 3 4 0 1 2 3 4 5 0 1 2 3

13 17 21 0 9 13 17 21 25 0 9 13 17
26 25 19 25 31 30 29 28 22 29 35 34 33
35 33 30 31 36 39 42 40 37 35 40 43 46

A

AA AB AC AD AE AF AG AH A I AJ AK
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0

6 6 6 0 1 2 3 4 5 6
4 5 6 ft(0) ft(1) ft(2) ft(3) ft(4) ft(5) ft(6) t

21 25 29 0 9 13 17 21 25 29 3
32 31 25 0 10 19 23 27 31 35 2
49 47 44 0 10 19 28 35 42 49 1

A

F I G U R E 12
(Continued)

1010 C H A P T E R 1 8 Deterministic Dynamic Programming

To determine how $6,000 should be allocated to the three investments, note that f1(6) �
49. Because f1(6) � J1(6, 4), we allocate $4,000 to investment 1. Then we must find f2(6 �
4) � 19 � J2(2, 1). We allocate $1,000 to investment 2. Finally, we find that f3(2 � 1) �
J3(1, 1) and allocate $1,000 to investment 3.

Solving an Inventory Problem on a Spreadsheet

We now show how to determine an optimal production policy for Example 4. An impor-
tant aspect of this production problem is that each month’s ending inventory must be be-
tween 0 and 4 units. We can ensure that this occurs by manually determining the allow-
able actions in each state. We will design our spreadsheet to ensure that the ending
inventory for each month must be between 0 and 4 inclusive.

Our first step in setting up the spreadsheet (Figure 13, file Dpinv.xls) is to enter the
production cost for each possible production level (0, 1, 2, 3, 4, 5) in B1:G2. Then we de-
fine ft(i) to be the minimum cost incurred in meeting demands for months t, t � 1, . . . ,
4 when i units are on hand at the beginning of month t. If dt is month t’s demand, then
for t � 1, 2, 3, 4 we may write

ft(i) � min {.5(i � x � dt) � c(x) � ft�1(i � x � dt)} (23)
x�0	i�x�dt	4

where c(x) � cost of producing x units during a month, and f5(i) � 0 for (i � 0, 1,
2, 3, 4).

If we define Jt(i, x) � .5(i � x � dt) � c(x) � ft�1(i � x � dt) we may write

ft(i) � min {Jt(i, x)}
x�0	i�x�dt	4

A B C D E F G H I J K L M
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

PROD COST 0 1 2 3 4 5
0 4 5 6 7 8

VALUE -5 0 1 2 3 4 5
M5 10000 0 0 0 0 0 10000
M4 10000 7 6 5 4 0 10000
M3 10000 12 10 7 6.5 6 10000
M2 10000 16 15 14 12 10.5 10000

STATE 0 0 0 0 0 0 1 1 1 1 1
ACTION 0 1 2 3 4 5 0 1 2 3 4

DEMAND
4 10000 10004 10005 10006 7 8.5 10000 10004 10005 6 7.5
2 10000 10004 12 12.5 13 13.5 10000 11 11.5 12 12.5
3 10000 10004 10005 18 17.5 16 10000 10004 17 16.5 15
1 10000 20 20.5 21 20.5 20.5 16 19.5 20 19.5 19.5

A

F I G U R E 13
Inventory Example

N O P Q R S T U V W X Y Z
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

1 2 2 2 2 2 2 3 3 3 3 3 3
5 0 1 2 3 4 5 0 1 2 3 4 5

9 10000 10004 5 6.5 8 9.5 10000 4 5.5 7 8.5 10
10 7 10.5 11 11.5 9 10010.5 6.5 10 10.5 8 10009.5 10011
16 10000 16 15.5 14 15 16 12 14.5 13 14 15 10010.5

10010.5 15.5 19 18.5 18.5 10009.5 10011 15 17.5 17.5 10008.5 10010 10011.5

A

Dpinv.xls

1 8 . 8 Using Excel to Solve Dynamic Programming Problems 1011

Next we compute Jt(i, x) in A13:AF16. For example, to compute J4(0, 2), we enter the
following formula in E13:

�HLOOKUP(E$11,$B$1�$G$2,2)

�.5*�1MAX(E$10�E$11�$A13,0)

�HLOOKUP(E$10�E$11�$A13,$B$4:$H$8,1�$AL13)

The first term in this sum yields c(x) (this is because E$11 is the production level). The
second term gives the holding cost for the month (this is because E$10�E$11�$A13
gives the month’s ending inventory). The final term yields ft�1(i � x � dt). This is be-
cause E$10�E$11�$A13 is the beginning inventory for month t � 1. The reference to
1�$AL13 in the final term ensures that we look up the value of ft�1(i � x � dt) in the
correct row [the values of the ft�1() will be tabulated in C5�G8]. Copying the formula
in E13 to the range C13:AF16 computes all the Jt(i, x).

In AG13:AK16, we compute the ft(d). To begin, we enter the following formulas in cells
AG13:AK13:

AG13: �MIN(C13:H13) [Computes f4(0)]

AH13: �MIN(I13:N13) [Computes f4(1)]

AI13: �MIN(O13:T13) [Computes f4(2)]

AJ13: �MIN(U13:Z13) [Computes f4(3)]

AK13: �MIN(AA13:AF13) [Computes f4(4)]

To compute all the ft(i), we now copy from the range AG13�AK13 to the range
AG13:AK16. For this to be successful, we need to have the correct values of the ft(i) in
B5:H8. In columns B and H of rows 5–8, we enter 10,000 (or any large positive number).
This ensures that it is very costly to end a month with an inventory that is negative or that
exceeds 4. This will ensure that each month’s ending inventory is between 0 and 4 inclu-
sive. In the range C5�G5, we enter a 0 in each cell. This is because f5(i) � 0 for i � 0,
1, 2, 3, 4. In cell C6, we enter �AG13; this enters the value of f1(0). By copying this for-
mula to the range C6:G8, we have created a table of the ft(d), which can be used (in rows
13–16) to look up the ft(d).

As with the spreadsheet we used to solve Example 5, our current spreadsheet exhibits
circular references. This is because rows 6–8 refer to rows 13–16, and rows 13–16 refer
to rows 6–8. Pressing F9 several times, however, resolves the circular references. You also
can resolve circular references by selecting Tools, Options, Calculations and checking the
Iterations box.

AA AB AC AD AE AF AG AH A I AJ AK AL
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

4 4 4 4 4 4
0 1 2 3 4 5 F(0) F(1) F(2) F(3) F(4)

0 4.5 6 7.5 9 10010.5 7 6 5 4 0 1
6 9.5 7 10008.5 10010 10011.5 12 10 7 6.5 6 2

10.5 12 13 14 10009.5 10011 16 15 14 12 10.5 3
13.5 16.5 10007.5 10009 10010.5 10012 20 16 15.5 15 13.5 4

A

F I G U R E 13
(Continued)

1012 C H A P T E R 1 8 Deterministic Dynamic Programming

For any initial inventory level, we can now compute the optimal production schedule. For
example, suppose the inventory at the beginning of month 1 is 0. Then f1(0) � 20 � J1(0, 1).
Thus, it is optimal to produce 1 unit during month 1. Now we seek f2(0 � 1 � 1) � 16 �
J2(0, 5), so we produce 5 units during month 2. Then we seek f3(0 � 5 � 3) � 7 � J3(2, 0),
so we produce 0 units during month 3. Solving f4(2 � 0 � 2) � J4(0, 4), we produce 4 units
during month 4.

P R O B L E M S
Group A

1 Use a spreadsheet to solve Problem 2 of Section 18.3.

2 Use a spreadsheet to solve Problem 4 of Section 18.4.

3 Use a spreadsheet to solve Problem 5 of Section 18.4.

S U M M A R Y
Dynamic programming solves a relatively complex problem by decomposing the problem
into a series of simpler problems. First we solve a one-stage problem, then a two-stage prob-
lem, and finally a T-stage problem (T � total number of stages in the original problem).

In most applications, a decision is made at each stage (t � current stage), a reward is
earned (or a cost is incurred) at each stage, and we go on to the stage t � 1 state.

Working Backward

In formulating dynamic programming recursions by working backward, it is helpful to re-
member that in most cases:

1 The stage is the mechanism by which we build up the problem.

2 The state at any stage gives the information needed to make the correct decision at
the current stage.

3 In most cases, we must determine how the reward received (or cost incurred) during
the current stage depends on the stage t decision, the stage t state, and the value of t.

4 We must also determine how the stage t � 1 state depends on the stage t decision, the
stage t state, and the value of t.

5 If we define (for a minimization problem) ft(i) as the minimum cost incurred during
stages t, t � 1, . . . , T, given that the stage t state is i, then (in many cases) we may write
ft(i) � min {(cost during stage t) � ft�1(new state at stage t � 1)}, where the minimum
is over all decisions allowable in state i during stage t.

6 We begin by determining all the fT (�)’s, then all the fT�1(�)’s, and finally f1 (the initial
state).

7 We then determine the optimal stage 1 decision. This leads us to a stage 2 state, at
which we determine the optimal stage 2 decision. We continue in this fashion until the
optimal stage T decision is found.

Review Problems 1013

Wagner–Whitin Algorithm and Silver–Meal
Heuristic for Dynamic Lot-Size Model

A periodic review inventory model in which each period’s demand is known at the be-
ginning of the problem is a dynamic lot-size model. A cost-minimizing production or
ordering policy may be found via a backward recursion, a forward recursion, the
Wagner–Whitin algorithm, or the Silver–Meal heuristic.

The Wagner–Whitin algorithm uses the fact that production occurs during a period if
and only if the period’s beginning inventory is zero. The decision during such a period is
the number of consecutive periods of demand that production should meet.

During a period in which beginning inventory is zero, the Silver–Meal heuristic com-
putes the average cost per period (setup plus holding) incurred in meeting the demand
during the next k periods. If k* minimizes this average cost, then the next k* periods of
demand should be met by the current period’s production.

Computational Considerations

Dynamic programming is much more efficient than explicit enumeration of the total cost
associated with each possible set of decisions that may be chosen during the T stages. Un-
fortunately, however, many practical applications of dynamic programming involve very
large state spaces, and in these situations, considerable computational effort is required to
determine optimal decisions.

R E V I E W P R O B L E M S
Group A

1 3 6

2 5 8

9

4 7 10

3 3

2

2

2

2

5

2 2

4

3

3

2

4

4

4

1

F I G U R E 141 In the network in Figure 14, find the shortest path from
node 1 to node 10 and the shortest path from node 2 to
node 10.

2 A company must meet the following demands on time:
month 1, 1 unit; month 2, 1 unit; month 3, 2 units; month
4, 2 units. It costs $4 to place an order, and a $2 per-unit
holding cost is assessed against each month’s ending
inventory. At the beginning of month 1, 1 unit is available.
Orders are delivered instantaneously.

a Use a backward recursion to determine an optimal
ordering policy.
b Use the Wagner–Whitin method to determine an op-
timal ordering policy.
c Use the Silver–Meal heuristic to determine an or-
dering policy.

3 Reconsider Problem 2, but now suppose that demands
need not be met on time. Assume that all lost demand is
backlogged and that a $1 per-unit shortage cost is assessed
against the number of shortages incurred during each month.
All demand must be met by the end of month 4. Use dynamic
programming to determine an ordering policy that
minimizes total cost.

4 Indianapolis Airlines has been told that it may schedule
six flights per day departing from Indianapolis. The
destination of each flight may be New York, Los Angeles,

or Miami. Table 20 shows the contribution to the company’s
profit from any given number of daily flights from
Indianapolis to each possible destination. Find the optimal
number of flights that should depart Indianapolis for each
destination. How would the answer change if the airline
were restricted to only four daily flights?

1014 C H A P T E R 1 8 Deterministic Dynamic Programming

5 I am working as a cashier at the local convenience store.
A customer’s bill is $1.09, and he gives me $2.00. I want to
give him change using the smallest possible number of
coins. Use dynamic programming to determine how to give
the customer his change. Does the answer suggest a general
result about giving change? Resolve the problem if a 20¢
piece (in addition to other United States coins) were
available.

6 A company needs to have a working machine during
each of the next six years. Currently, it has a new machine.
At the beginning of each year, the company may keep the
machine or sell it and buy a new one. A machine cannot be
kept for more than three years. A new machine costs $5,000.
The revenues earned by a machine, the cost of maintaining
it, and the salvage value that can be obtained by selling it at
the end of a year depend on the age of the machine (see
Table 21). Use dynamic programming to maximize the net
profit earned during the next six years.

7 A company needs the following number of workers
during each of the next five years: year 1, 15; year 2, 30;
year 3, 10; year 4, 30; year 5, 20. At present, the company
has 20 workers. Each worker is paid $30,000 per year. At
the beginning of each year, workers may be hired or fired.
It costs $10,000 to hire a worker and $20,000 to fire a
worker. A newly hired worker can be used to meet the
current year’s worker requirement. During each year, 10%
of all workers quit (workers who quit do not incur any firing
cost).

a With dynamic programming, formulate a recursion
that can be used to minimize the total cost incurred in
meeting the worker requirements of the next five years.
b How would the recursion be modified if hired work-
ers cannot be used to meet worker requirements until the
year following the year in which they are hired?

8 At the beginning of each year, Barnes Carr Oil sets the
world oil price. If a price p is set, then D(p) barrels of oil
will be demanded by world customers. We assume that

during any year, each oil company sells the same number of
barrels of oil. It costs Barnes Carr Oil c dollars to extract
and refine each barrel of oil. Barnes Carr cannot set too
high a price, however, because if a price p is set and there
are currently N oil companies, then g(p, N) oil companies
will enter the oil business [g(p, N) could be negative].
Setting too high a price will dilute future profits because of
the entrance of new companies. Barnes Carr wants to
maximize the discounted profit the company will earn over
the next 20 years. Formulate a recursion that will aid Barnes
Carr in meeting its goal. Initially, there are 10 oil companies.

9 For a computer to work properly, three subsystems of
the computer must all function properly. To increase the
reliability of the computer, spare units may be added to each
system. It costs $100 to add a spare unit to system 1, $300
to system 2, and $200 to system 3. As a function of the
number of added spares (a maximum of two spares may be
added to each system), the probability that each system will
work is given in Table 22. Use dynamic programming to
maximize the probability that the computer will work
properly, given that $600 is available for spare units.

Group B

10 During any year, I can consume any amount that does
not exceed my current wealth. If I consume c dollars during
a year, I earn ca units of happiness. By the beginning of the
next year, the previous year’s ending wealth grows by a
factor k.

a Formulate a recursion that can be used to maximize
total utility earned during the next T years. Assume I
originally have w0 dollars.
b Let ft(w) be the maximum utility earned during years
t, t � 1, . . . , T, given that I have w dollars at the be-
ginning of year t; and ct(w) be the amount that should
be consumed during year t to attain ft(w). By working
backward, show that for appropriately chosen constants
at and bt,

ft(w) � btw
a and ct(w) � atw

Interpret these results.

11 At the beginning of month t, farmer Smith has xt

bushels of wheat in his warehouse. He has the opportunity
to sell wheat at a price st dollars per bushel and can buy
wheat at pt dollars per bushel. Farmer Smith’s warehouse
can hold at most C units at the end of each month.

a Formulate a recursion that can be used to maximize
the total profit earned during the next T months.
b Let ft(xt) be the maximum profit that can be earned
during months t, t � 1, . . . , T, given that xt bushels of

TA B L E 20

Profit per Flight ($)

Number of Planes

Destination 1 2 3 4 5 6

New York 180 150 210 250 270 280
Los Angeles 100 195 275 325 300 250
Miami 190 180 265 310 350 320

TA B L E 21

Age of Machine at
Beginning of Year

0 Year 1 Year 2 Years

Revenues ($) 4,500 3,000 1,500
Operating Costs ($) 4,500 3,700 1,100
Salvage Value at End of Year ($) 3,000 1,800 500

TA B L E 22

Number of
Probability That a System Works

Spares System 1 System 2 System 3

0 .85 .60 .70
1 .90 .85 .90
2 .95 .95 .98

References 1015

wheat are in the warehouse at the beginning of month t.
By working backward, show that for appropriately cho-
sen constants at and bt,

ft(xt) � at � btxt

c During any given month, show that the profit-
maximizing policy has the following properties: (1) The

amount sold during month t will equal either xt or zero.
(2) The amount purchased during a given month will be
either zero or sufficient to bring the month’s ending
stock to C bushels.

R E F E R E N C E S
The following references are oriented toward applications
and are written at an intermediate level:

Dreyfus, S., and A. Law. The Art and Theory of Dynamic
Programming. Orlando, Fla.: Academic Press, 1977.

Nemhauser, G. Introduction to Dynamic Programming. New
York: Wiley, 1966.

Wagner, H. Principles of Operations Research, 2d ed. En-
glewood Cliffs, N.J.: Prentice Hall, 1975.

The following five references are oriented toward theory
and are written at a more advanced level:

Bellman, R. Dynamic Programming. Princeton, N.J.: Prince-
ton University Press, 1957.

Bellman, R., and S. Dreyfus. Applied Dynamic Program-
ming. Princeton, N.J.: Princeton University Press, 1962.

Bersetkas, D. Dynamic Programming and Optimal Control,
vol. 1. Cambridge, Mass.: Athena Scientific, 2000.

Denardo, E. Dynamic Programming: Theory and Applica-
tions. Englewood Cliffs, N.J.: Prentice Hall, 1982.

Whittle, P. Optimization Over Time: Dynamic Program-
ming and Stochastic Control, vol. 1. New York: Wiley,
1982.

Morton, T. “Planning Horizons for Dynamic Programs,”
Operations Research 27(1979):730–743. A discussion of
turnpike theorems.

Peterson, R., and E. Silver. Decision Systems for Inventory
Management and Production Planning. New York: Wi-
ley, 1998. Discusses the Silver–Meal method.

Waddell, R. “A Model for Equipment Replacement Deci-
sions and Policies,” Interfaces 13(1983):1–8. An appli-
cation of the equipment replacement model.

Wagner, H., and T. Whitin. “Dynamic Version of the Eco-
nomic Lot Size Model,” Management Science
5(1958):89–96. Discusses Wagner–Whitin method.

� � � � � � � � � � �

Probabilistic Dynamic Programming

Recall from our study of deterministic dynamic programming that many recursions were of the
following form:

ft (current state) � min
all feasible

(or max){costs during current stage � ft�1 (new state)}

decisions

For all the examples in Chapter 18, a specification of the current state and current decision
was enough to tell us with certainty the new state and the costs during the current stage. In
many practical problems, these factors may not be known with certainty, even if the current
state and decision are known. For example, in the inventory model of Section 18.3, we as-
sumed that each period’s demand was known at the beginning of the problem. In most situa-
tions, it would be more realistic to assume that period t ’s demand is a random variable whose
value is not known until after period t ’s production decision is made. Even if we know the cur-
rent period’s state (beginning inventory level) and decision (production during the current pe-
riod), the next period’s state and the current period’s cost will be random variables whose val-
ues are not known until the value of period t ’s demand is known. The Chapter 18 discussion
simply does not apply to this problem.

In this chapter, we explain how to use dynamic programming to solve problems in which
the current period’s cost or the next period’s state are random. We call these problems prob-
abilistic dynamic programming problems (or PDPs). In a PDP, the decision maker’s goal is
usually to minimize expected (or expected discounted) cost incurred or to maximize expected
(or expected discounted) reward earned over a given time horizon. Chapter 19 concludes with
a brief study of Markov decision processes. A Markov decision process is just a probabilistic
dynamic programming problem in which the decision maker faces an infinite horizon.

19.1 When Current Stage Costs Are Uncertain,
but the Next Period’s State Is Certain
For problems in this section, the next period’s state is known with certainty, but the re-
ward earned during the current stage is not known with certainty (given the current state
and decision).

E X A M P L E 1

For a price of $1/gallon, the Safeco Supermarket chain has purchased 6 gallons of milk
from a local dairy. Each gallon of milk is sold in the chain’s three stores for $2/gallon.
The dairy must buy back for 50¢/gallon any milk that is left at the end of the day. Un-
fortunately for Safeco, demand for each of the chain’s three stores is uncertain. Past data
indicate that the daily demand at each store is as shown in Table 1. Safeco wants to allo-

Milk Distribution

1 9 . 1 When Current Stage Costs Are Uncertain, but the Next Period’s State Is Certain 1017

cate the 6 gallons of milk to the three stores so as to maximize the expected net daily
profit (revenues less costs) earned from milk. Use dynamic programming to determine
how Safeco should allocate the 6 gallons of milk among the three stores.

Solution With the exception of the fact that the demand (and therefore the revenue) is uncertain,
this problem is very similar to the resource allocation problems studied in Section 18.4.

Observe that since Safeco’s daily purchase costs are always $6, we may concentrate
our attention on the problem of allocating the milk to maximize daily expected revenue
earned from the 6 gallons.

Define

rt(gt) � expected revenue earned from gt gallons assigned to store t

ft(x) � maximum expected revenue earned from x gallons assigned
to stores t, t � 1, . . . , 3

Since f3(x) must by definition be the expected revenue earned from assigning x gallons of
milk to store 3, we see that f3(x) � r3(x). For t � 1, 2, we may write

ft(x) � max
gt

{rt(gt) � ft�1(x � gt)} (1)

where gt must be a member of {0, 1, . . . , x}. Equation (1) follows, because for any choice
of gt (the number of gallons assigned to store t), the expected revenue earned from store
t, t � 1, . . . , 3 will be the sum of the expected revenue earned from store t if gt gallons
are assigned to store t plus the maximum expected revenue that can be earned from the
stores t � 1, t � 2, . . . , 3 when x � gt gallons are assigned to these stores. To compute
the optimal allocation of milk to the stores, we begin by computing f3(0), f3(1), . . . , f3(6).
Then we use Equation (1) to compute f2(0), f2(1), . . . , f2(6). Finally we determine f1(6).

We begin by computing the rt(gt)’s. Note that it would be foolish to assign more than
3 gallons to any store. For this reason, we compute the rt(gt)’s only for gt � 0, 1, 2, or 3.
As an example, we compute r3(2), the expected revenue earned if 2 gallons are assigned
to store 3. If the demand at store 3 is for 2 or more gallons, both gallons assigned to store
3 will be sold, and $4 in revenue will be earned. If the demand at store 3 is 1 gallon, 1
gallon will be sold for $2, and 1 gallon will be returned for 50¢. Hence, if demand at store
3 is for 1 gallon, a revenue of $2.50 will be earned. Since there is a .60 chance that de-
mand at store 3 will be for 2 or more gallons and a .40 chance that store 3 demand will
be for 1 gallon, it follows that r3(2) � (.30 � .30)(4.00) � .40(2.50) � $3.40. Similar
computations yield the following results:

TA B L E 1
Probability Distributions for Daily Milk Demand

Daily Demand
(gallons) Probability

Store 1 1 .60
2 0
3 .40

Store 2 1 .50
2 .10
3 .40

Store 3 1 .40
2 .30
3 .30

1018 C H A P T E R 1 9 Probabilistic Dynamic Programming

r3(0) � $0 r2(0) � $0 r1(0) � $0

r3(1) � $2.00 r2(1) � $2.00 r1(1) � $2.00

r3(2) � $3.40 r2(2) � $3.25 r1(2) � $3.10

r3(3) � $4.35 r2(3) � $4.35 r1(3) � $4.20

We now use (1) to determine an optimal allocation of milk to stores. Let gt(x) be an
allocation of milk to store t that attains ft(x). Then

f3(0) � r3(0) � 0 g3(0) � 0

f3(1) � r3(1) � 2.00 g3(1) � 1

f3(2) � r3(2) � 3.40 g3(2) � 2

f3(3) � r3(3) � 4.35 g3(3) � 3

We need not compute f3(4), f3(5), and f3(6), because an optimal allocation will never have
more than 3 gallons to allocate to a single store (demand at any store is never more than
3 gallons).

Using (1) to work backward, we obtain

f2(0) � r2(0) � f3(0 � 0) � 0 g2(0) � 0

f2(1) � max � g2(1) � 0 or 1

f2(2) � max � g2(2) � 1

f2(3) � max � g2(3) � 1

Note that in computing f2(4), f2(5), and f2(6), we need not consider any allocation for more
than 3 gallons to store 2 or any that leaves more than 3 gallons for store 3.

f2(4) � max � g2(4) � 2

f2(5) � max � g2(5) � 3

f2(6) � r2(3) � f3(6 � 3) � 4.35 � 4.35 � 8.70* g2(6) � 3

Finally,

f1(6) � max � g1(6) � 1 or 2

Thus, we can either assign 1 or 2 gallons to store 1. Suppose we arbitrarily choose to as-
sign 1 gallon to store 1. Then we have 6 � 1 � 5 gallons for stores 2 and 3. Since f2(5)

r1(0) � f2(6 � 0) � 0 � 8.70

r1(1) � f2(6 � 1) � 2.00 � 7.75 � 9.75*

r1(2) � f2(6 � 2) � 3.10 � 6.65 � 9.75*

r1(3) � f2(6 � 3) � 4.20 � 5.40 � 9.60

r2(2) � f3(5 � 2) � 3.25 � 4.35 � 7.60

r2(3) � f3(5 � 3) � 4.35 � 3.40 � 7.75*

r2(1) � f3(4 � 1) � 2.00 � 4.35 � 6.35

r2(2) � f3(4 � 2) � 3.25 � 3.40 � 6.65*

r2(3) � f3(4 � 3) � 4.35 � 2.00 � 6.35

r2(0) � f3(3 � 0) � 0 � 4.35 � 4.35

r2(1) � f3(3 � 1) � 2.00 � 3.40 � 5.40*

r2(2) � f3(3 � 2) � 3.25 � 2.00 � 5.25

r2(3) � f3(3 � 3) � 4.35 � 0 � 4.35

r2(0) � f3(2 � 0) � 0 � 3.40 � 3.40

r2(1) � f3(2 � 1) � 2.00 � 2.00 � 4.00*

r2(2) � f3(2 � 2) � 3.25 � 0 � 3.25

r2(0) � f3(1 � 0) � 2.00*

r2(1) � f3(1 � 1) � 2.00*

1 9 . 2 A Probabilistic Inventory Model 1019

is attained by g2(5) � 3, we assign 3 gallons to store 2. Then 5 � 3 � 2 gallons are avail-
able for store 3. Since g3(2) � 2, we assign 2 gallons to store 3. Note that although this
policy obtains the maximum expected revenue, f1(6) � $9.75, the total revenue actually
received on a given day may be more or less than $9.75. For example, if demand at each
store were 1 gallon, total revenue would be 3(2.00) � 3(0.50) � $7.50, whereas if de-
mand at each store were 3 gallons, all the milk would be sold at $2/gallon, and the total
revenue would be 6(2.00) � $12.00.

P R O B L E M S
Group A

1 In Example 1, find another allocation of milk that
maximizes expected daily revenue.

2 Suppose that $4 million is available for investment in
three projects. The probability distribution of the net present
value earned from each project depends on how much is

invested in each project. Let It be the random variable
denoting the net present value earned by project t. The
distribution of It depends on the amount of money invested
in project t, as shown in Table 2 (a zero investment in a
project always earns a zero NPV). Use dynamic programming
to determine an investment allocation that maximizes the

expected NPV obtained from the three investments.

19.2 A Probabilistic Inventory Model
In this section, we modify the inventory model of Section 18.3 to allow for uncertain de-
mand. This will illustrate the difficulties involved in solving a PDP for which the state
during the next period is uncertain (given the current state and current decision).

E X A M P L E 2 Three-Period Production Policy

TA B L E 2
Investment Probability for Problem 2

Investment
(millions) Probability

Project 1 $1 P(I1 � 2) � .6 P(I1 � 4) � .3 P(I1 � 5) � .1
$2 P(I1 � 4) � .5 P(I1 � 6) � .3 P(I1 � 8) � .2
$3 P(I1 � 6) � .4 P(I1 � 7) � .5 P(I1 � 10) � .1
$4 P(I1 � 7) � .2 P(I1 � 9) � .4 P(I1 � 10) � .4

Project 2 $1 P(I2 � 1) � .5 P(I2 � 2) � .4 P(I2 � 4) � .1
$2 P(I2 � 3) � .4 P(I2 � 5) � .4 P(I2 � 6) � .2
$3 P(I2 � 4) � .3 P(I2 � 6) � .3 P(I2 � 8) � .4
$4 P(I2 � 3) � .4 P(I2 � 8) � .3 P(I2 � 9) � .3

Project 3 $1 P(I3 � 0) � .2 P(I3 � 4) � .6 P(I3 � 5) � .2
$2 P(I3 � 4) � .4 P(I3 � 6) � .4 P(I3 � 7) � .2
$3 P(I3 � 5) � .3 P(I3 � 7) � .4 P(I3 � 8) � .3
$4 P(I3 � 6) � .1 P(I3 � 8) � .5 P(I3 � 9) � .4

1020 C H A P T E R 1 9 Probabilistic Dynamic Programming

Consider the following three-period inventory problem. At the beginning of each period,
a firm must determine how many units should be produced during the current period. Dur-
ing a period in which x units are produced, a production cost c(x) is incurred, where c(0) �
0, and for x � 0, c(x) � 3 � 2x. Production during each period is limited to at most 4
units. After production occurs, the period’s random demand is observed. Each period’s de-
mand is equally likely to be 1 or 2 units. After meeting the current period’s demand out
of current production and inventory, the firm’s end-of-period inventory is evaluated, and
a holding cost of $1 per unit is assessed. Because of limited capacity, the inventory at the
end of each period cannot exceed 3 units. It is required that all demand be met on time.
Any inventory on hand at the end of period 3 can be sold at $2 per unit. At the beginning
of period 1, the firm has 1 unit of inventory. Use dynamic programming to determine a
production policy that minimizes the expected net cost incurred during the three periods.

Solution Define ft(i) to be the minimum expected net cost incurred during the periods t, t � 1,
. . . , 3 when the inventory at the beginning of period t is i units. Then

f3(i) � min
x

{c(x) � (�
1
2

�)(i � x � 1) � (�
1
2

�)(i � x � 2)
(2)

� (�
1
2

�)2(i � x � 1) � (�
1
2

�)2(i � x � 2)}

where x must be a member of {0, 1, 2, 3, 4} and x must satisfy (2 � i) � x � (4 � i).
Equation (2) follows, because if x units are produced during period 3, the net cost dur-

ing period 3 is (expected production cost) � (expected holding cost) � (expected salvage
value). If x units are produced, the expected production cost is c(x), and there is a �

1
2

� chance
that the period 3 holding cost will be i � x � 1 and a �

1
2

� chance that it will be i � x � 2.
Hence, the period 3 expected holding cost will be (�

1
2

�)(i � x � 1) � (�
1
2

�)(i � x � 2) �
i � x � �

3
2

�. Similar reasoning shows that the expected salvage value (a negative cost) at
the end of period 3 will be (�

1
2

�)2(i � x � 1) � (�
1
2

�)2(i � x � 2) � 2i � 2x � 3. To en-
sure that period 3 demand is met, we must have i � x � 2, or x � 2 � i. Similarly, to
ensure that ending period three inventory does not exceed 3 units, we must have i � x �
1 � 3, or x � 4 � i.

For t � 1, 2, we can derive the recursive relation for ft(i) by noting that for any month
t production level x, the expected costs incurred during periods t, t � 1, . . . , 3 are the
sum of the expected costs incurred during period t and the expected costs incurred dur-
ing periods t � 1, t � 2, . . . , 3. As before, if x units are produced during month t, the
expected cost during month t will be c(x) � (�

1
2

�)(i � x � 1) � (�
1
2

�)(i � x � 2). (Note that
during periods 1 and 2, no salvage value is received.) If x units are produced during month
t, the expected cost during periods t � 1, t � 2, . . . , 3 is computed as follows. Half of
the time, the demand during period t will be 1 unit, and the inventory at the beginning of
period t � 1 will be i � x � 1. In this situation, the expected costs incurred during pe-
riods t � 1, t � 2, . . . , 3 (assuming we act optimally during these periods) is ft�1(i �
x � 1). Similarly, there is a �

1
2

� chance that the inventory at the beginning of period t � 1
will be i � x � 2. In this case, the expected cost incurred during periods t � 1, t � 2,
. . . , 3 will be ft�1(i � x � 2). In summary, the expected cost during periods t � 1, t �
2, . . . , 3 will be (�

1
2

�) ft�1(i � x � 1) � (�
1
2

�) ft�1(i � x � 2). With this in mind, we may
write for t � 1, 2,

ft(i) � min
x

[c(x) � (�
1
2

�)(i � x � 1) � (�
1
2

�)(i � x � 2)
(3)

� (�
1
2

�) ft�1(i � x � 1) � (�
1
2

�) ft�1(i � x � 2)]

where x must be a member of {0, 1, 2, 3, 4} and x must satisfy (2 � i) � x � (4 � i).
Generalizing the reasoning that led to (3) yields the following important observation

concerning the formulation of PDPs. Suppose the possible states during period t � 1 are
s1, s2, . . . , sn and the probability that the period t � 1 state will be si is pi. Then the min-
imum expected cost incurred during periods t � 1, t � 2, . . . , end of the problem is

1 9 . 2 A Probabilistic Inventory Model 1021

�
i�n

i�1

pi ft�1(si)

where ft�1(si) is the minimum expected cost incurred from period t � 1 to the end of the
problem, given that the state during period t � 1 is si.

We define xt(i) to be a period t production level attaining the minimum in (3) for ft(i).
We now work backward until f1(1) is determined. The relevant computations are summa-
rized in Tables 3, 4, and 5. Since each period’s ending inventory must be nonnegative and
cannot exceed 3 units, the state during each period must be 0, 1, 2, or 3.

As in Section 18.3, we begin by producing x1(1) � 3 units during period 1. We cannot,
however, determine period 2’s production level until period 1’s demand is observed. Also,

TA B L E 3
Computations for f3(i)

Expected Expected
Holding Cost Salvage Value Total f3(i)

i x c (x) (i � x � �
3
2

�) (2i � 2x � 3) Expected Cost x3(i)

3 0 0 �
3
2

� 3 ��
3
2

�
* f3(3) � ��

3
2

�

3 1 5 �
5
2

� 5 �
5
2

� x3(3) � 0

2 0 0 �
1
2

� 1 ��
1
2

�
* f3(2) � ��

1
2

�

2 1 5 �
3
2

� 3 �
7
2

� x3(2) � 0

2 2 7 �
5
2

� 5 �
9
2

�

1 1 5 �
1
2

� 1 �
9
2

�
* f3(1) � �

9
2

�

1 2 7 �
3
2

� 3 �
1
2
1
� x3(1) � 1

1 3 9 �
5
2

� 5 �
1
2
3
�

0 2 7 �
1
2

� 1 �
1
2
3
�

* f3(0) � �
1
2
3
�

0 3 9 �
3
2

� 3 �
1
2
5
� x3(0) � 2

0 4 11 �
5
2

� 5 �
1
2
7
�

TA B L E 4
Computations for f2(i)

Expected
Expected Future Cost Total

Holding Cost ((�
1
2

�)f3(i � x � 1) Expected Cost f2(i)
i x c (x) (i � x � �

3
2

�) �(�
1
2

�)f3 (i � x � 2)) Periods 2,3 x2(i)

3 0 0 �
3
2

� 2 �
7
2

�
* f2(3) � �

7
2

�

3 1 5 �
5
2

� �1 �
1
2
3
� x2(3) � 0

2 0 0 �
1
2

� �
1
2
1
� 6* f2(2) � 6

2 1 5 �
3
2

� 2 �
1
2
7
� x2(2) � 0

2 2 7 �
5
2

� �1 �
1
2
7
�

1 1 5 �
1
2

� �
1
2
1
� 11 f2(1) � �

2
2
1
�

1 2 7 �
3
2

� 2 �
2
2
1
�

* x2(1) � 2 or 3

1 3 9 �
5
2

� �1 �
2
2
1
�

*

0 2 7 �
1
2

� �
1
2
1
� 13 f2(0) � �

2
2
5
�

0 3 9 �
3
2

� 2 �
2
2
5
�

* x2(0) � 3 or 4

0 4 11 �
5
2

� �1 �
2
2
5
�

*

1022 C H A P T E R 1 9 Probabilistic Dynamic Programming

period 3’s production level cannot be determined until period 2’s demand is observed. To
illustrate the idea, we determine the optimal production schedule if period 1 and period
2 demands are both 2 units. Since x1(1) � 3, 3 units will be produced during period 1.
Then period 2 will begin with an inventory of 1 � 3 � 2 � 2 units, so x2(2) � 0 units
should be produced. After period 2’s demand of 2 units is met, period 3 will begin with
2 � 2 � 0 units on hand. Thus, x3(0) � 2 units will be produced during period 3.

In contrast, suppose that period 1 and period 2 demands are both 1 unit. As before,
x1(1) � 3 units will be produced during period 1. Then period 2 will begin with 1 �
3 � 1 � 3 units, and x2(3) � 0 units will be produced during period 2. Then period 3
will begin with 3 � 1 � 2 units on hand, and x3(2) � 0 units will be produced during
period 3. Note that the optimal production policy has adapted to the low demand by
reducing period 3 production. This example illustrates an important aspect of dynamic
programming solutions for problems in which future states are not known with certainty
at the beginning of the problem: If a random factor (such as random demand) influences
transitions from the period t state to the period t � 1 state, the optimal action for period
t cannot be determined until period t’s state is known.

(s, S) Policies

Consider the following modification of the dynamic lot-size model of Section 18.7, for
which there exists an optimal production policy called an (s, S) inventory policy:

1 The cost of producing x � 0 units during a period consists of a fixed cost K and a per-
unit variable production cost c.

2 With a probability p(x), the demand during a given period will be x.

3 A holding cost of h per unit is assessed on each period’s ending inventory. If we are
short, a per-unit shortage cost of d is incurred. (The case where no shortages are allowed
may be obtained by letting d be very large.)

4 The goal is to minimize the total expected cost incurred during periods 1, 2, . . . , T.

5 All demands must be met by the end of period T.

For such an inventory problem, Scarf (1960) used dynamic programming to prove that
there exists an optimal production policy of the following form: For each t (t � 1, 2, . . . ,
T) there exists a pair of numbers (st, St) such that if it�1, the entering inventory for period

TA B L E 5
Computations for f1(1)

Expected
Expected Future Cost Total

Holding Cost ((�
1
2
�)f2(i � x � 1) Expected Cost f1(1)

x c (x) (i � x � �
3
2

�) �(�
1
2
�)f2(i � x � 2)) Periods 1–3 x1(1)

1 5 �
1
2

� �
2
2
3
� 17 f1(1) � �

6
4
5
�

2 7 �
3
2

� �
3
4
3
� �

6
4
7
� x1(1) � 3

3 9 �
5
2

� �
1
4
9
� �

6
4
5
�

*

1 9 . 3 How to Maximize the Probability of a Favorable Event Occurring 1023

t, is less than st, then an amount St � it�1 is produced; if it�1 � st, then it is optimal not
to produce during period t. Such a policy is called an (s, S) policy.

For Example 2, our calculations show that s2 � 2, S2 � 3 or 4, s3 � 2, and S3 � 2.
Thus, if we enter period 2 with 1 or 0 units, we produce enough to bring our stock level
(before meeting period 2 demand) up to 3 or 4 units. If we enter period 2 with more than
1 unit, then no production should take place during period 2.

P R O B L E M S
Group A

1 For Example 2, suppose that the period 1 demand is 1
unit, and the period 2 demand is 2 units. What would be the
optimal production schedule?

2 Re-solve Example 2 if the end-of-period holding cost is
$2 per unit.

3 In Example 2, suppose that shortages are allowed, and
each shortage results in a lost sale and a cost incurred of $3.
Now re-solve Example 2.

Group B

4 Chip Bilton sells sweatshirts at State U football games.
He is equally likely to sell 200 or 400 sweatshirts at each
game. Each time Chip places an order, he pays $500 plus
$5 for each sweatshirt he orders. Each sweatshirt sells for
$8. A holding cost of $2 per shirt (because of the opportunity
cost for capital tied up in sweatshirts as well as storage
costs) is assessed against each shirt left at the end of a
game. Chip can store at most 400 shirts after each game.
Assuming that the number of shirts ordered by Chip must

be a multiple of 100, determine an ordering policy that maximizes expected profits earned during the first three games of the
season. Assume that any leftover sweatshirts have a value of $6.

19.3 How to Maximize the Probability of a Favorable Event Occurring†

There are many occasions on which the decision maker’s goal is to maximize the proba-
bility of a favorable event occurring. For instance, a company may want to maximize its
probability of reaching a specified level of annual profits. To solve such a problem, we
assign a reward of 1 if the favorable event occurs and a reward of 0 if it does not occur.
Then the maximization of expected reward will be equivalent to maximizing the proba-
bility that the favorable event will occur. Also, the maximum expected reward will equal
the maximum probability of the favorable event occurring. The following two examples
illustrate how this idea may be used to solve some fairly complex problems.

E X A M P L E 3

A gambler has $2. She is allowed to play a game of chance four times, and her goal is to
maximize her probability of ending up with a least $6. If the gambler bets b dollars on a
play of the game, then with probability .40, she wins the game and increases her capital
position by b dollars; with probability .60, she loses the game and decreases her capital
by b dollars. On any play of the game, the gambler may not bet more money than she has
available. Determine a betting strategy that will maximize the gambler’s probability of at-
taining a wealth of at least $6 by the end of the fourth game. We assume that bets of zero
dollars (that is, not betting) are permissible.

Solution Define ft(d) to be the probability that by the end of game 4, the gambler will have at least

Gambling Game

†This section covers topics that may be omitted with no loss of continuity.

1024 C H A P T E R 1 9 Probabilistic Dynamic Programming

$6, given that she acts optimally and has d dollars immediately before the game is played
for the t th time. If we give the gambler a reward of 1 when her ending wealth is at least $6
and a reward of 0 if it is less, then ft(d) will equal the maximum expected reward that can
be earned during games t, t � 1, . . . , 4 if the gambler has d dollars immediately before the
t th play of the game. As usual, we define bt(d) dollars to be a bet size that attains ft(d).

If the gambler is playing the game for the fourth and final time, her optimal strategy
is clear: If she has $6 or more, don’t bet anything, but if she has less than $6, bet enough
money to ensure (if possible) that she will have $6 if she wins the last game. Note that if
she begins game 4 with $0, $1, or $2, there is no way to win (no way to earn a reward of
1). This reasoning yields the following results:

f4(0) � 0 b4(0) � $0

f4(1) � 0 b4(1) � $0 or $1

f4(2) � 0 b4(2) � $0, $1, or $2

f4(3) � .40 b4(3) � $3

f4(4) � .40 b4(4) � $2, $3, or $4

f4(5) � .40 b4(5) � $1, $2, $3, $4, or $5

For d � 6,

f4(d) � 1 b4(d) � $0, $1, . . . , $(d � 6)

With probability .40 win game t
ft�1(d � b)

(Expected reward)
With probability .60 lose game t

ft�1(d � b)

For t � 3, we can find a recursion for ft(d) by noting that if the gambler has d dollars, is
about to play the game for the t th time, and bets b dollars, then the following diagram
summarizes what can occur:
Thus, if the gambler has d dollars at the beginning of game t and bets b dollars, the
expected reward (or expected probability of reaching $6) will be .4 ft�1(d � b) �
.6 ft�1(d � b). This leads to the following recursion:

ft(d) � max
b

(.4 ft�1(d � b) � .6 ft�1(d � b)) (4)

where b must be a member of {0, 1, . . . , d}. Then bt(d) is any bet size that attains the
maximum in (4) for ft(d). Using (4), we work backward until f1(2) has been determined.

Stage 3 Computations

f3(0) � 0 b3(0) � $0

f3(1) � max �
Thus, f3(1) � 0, and b3(1) � $0 or $1.

f3(2) � max �
Thus, f3(2) � .16, and b3(2) � $1 or $2.

.4 f4(2) � .6 f4(2) � 0 * (Bet $0)

.4 f4(3) � .6 f4(1) � .16* (Bet $1)

.4 f4(4) � .6 f4(0) � .16* (Bet $2)

.4 f4(1) � .6 f4(1) � 0* (Bet $0)

.4 f4(2) � .6 f4(0) � 0* (Bet $1)

1 9 . 3 How to Maximize the Probability of a Favorable Event Occurring 1025

f3(3) � max �
Thus, f3(3) � .40, and b3(3) � $0 or $3.

f3(4) � max �
Thus, f3(4) � .40, and b3(4) � $0, $1, $2, $3, or $4.

f3(5) � max �
Thus, f3(5) � .64, and b3(5) � $1 or $2. For d � 6, f3(d) � 1, and b3(d) � $0, $1, . . . ,
$(d � 6).

Stage 2 Computations

f2(0) � 0 b2(0) � $0

f2(1) � max �
Thus, f2(1) � .064, and b2(1) � $1.

f2(2) � max �
Thus, f2(2) � .16, and b2(2) � $0, $1, or $2.

f2(3) � max �
Thus, f2(3) � .40, and b2(3) � $0 or $3.

f2(4) � max �
Thus, f2(4) � .496, and b2(4) � $1 or $2.

.4 f3(4) � .6 f3(4) � .40 (Bet $0)

.4 f3(5) � .6 f3(3) � .496* (Bet $1)

.4 f3(6) � .6 f3(2) � .496* (Bet $2)

.4 f3(7) � .6 f3(1) � .40 (Bet $3)

.4 f3(8) � .6 f3(0) � .40 (Bet $4)

.4 f3(3) � .6 f3(3) � .40* (Bet $0)

.4 f3(4) � .6 f3(2) � .256 (Bet $1)

.4 f3(5) � .6 f3(1) � .256 (Bet $2)

.4 f3(6) � .6 f3(0) � .40* (Bet $3)

.4 f3(2) � .6 f3(2) � .16* (Bet $0)

.4 f3(3) � .6 f3(1) � .16* (Bet $1)

.4 f3(4) � .6 f3(0) � .16* (Bet $2)

.4 f3(1) � .6 f3(1) � 0 (Bet $0)

.4 f3(2) � .6 f3(0) � .064* (Bet $1)

.4 f4(5) � .6 f4(5) � .40 (Bet $0)

.4 f4(6) � .6 f4(4) � .64* (Bet $1)

.4 f4(7) � .6 f4(3) � .64* (Bet $2)

.4 f4(8) � .6 f4(2) � .40 (Bet $3)

.4 f4(9) � .6 f4(1) � .40 (Bet $4)

.4 f4(10) � .6 f4(0) � .40 (Bet $5)

.4 f4(4) � .6 f4(4) � .40* (Bet $0)

.4 f4(5) � .6 f4(3) � .40* (Bet $1)

.4 f4(6) � .6 f4(2) � .40* (Bet $2)

.4 f4(7) � .6 f4(1) � .40* (Bet $3)

.4 f4(8) � .6 f4(0) � .40* (Bet $4)

1026 C H A P T E R 1 9 Probabilistic Dynamic Programming

f2(5) � max �
Thus, f2(5) � .64, and b2(5) � $0, $1, or $2. For d � 6, f2(d) � 1 and b2(d) � $0,
$1, . . . , $(d � 6).

Stage 1 Computations

f1(2) � max �
Thus, f1(2) � .1984, and b1(2) � $1 or $2. Hence, the gambler has a .1984 chance of
reaching $6. Suppose the gambler begins by betting b1(2) � $1. Then Figure 1 indicates
the various possibilities that can occur. By following the strategy outlined in the figure,
the gambler can reach her goal of $6 in two different ways. First, she can win game 1 and
game 3. This will occur with probability (.4)2 � .16. Second, the gambler can win if she loses
the first game but wins the next three games. This will occur with probability .6(.4)3 � .0384.
Hence, the gambler’s probability of reaching $6 is .16 � .0384 � .1984 � f1(2).

E X A M P L E 4

Martina McEnroe has two types of serves: a hard serve (H) and a soft serve (S).† The
probability that Martina’s hard serve will land in bounds is pH, and the probability that
her soft serve will land in bounds is pS. If Martina’s hard serve lands in bounds, there is
a probability wH that Martina will win the point. If Martina’s soft serve lands in bounds,
there is a probability wS that Martina will win the point. We assume that pH 	 pS and

Tennis Serves

.4 f2(2) � .6 f2(2) � .16 (Bet $0)

.4 f2(3) � .6 f2(1) � .1984* (Bet $1)

.4 f2(4) � .6 f2(0) � .1984* (Bet $2)

.4 f3(5) � .6 f3(5) � .64* (Bet $0)

.4 f3(6) � .6 f3(4) � .64* (Bet $1)

.4 f3(7) � .6 f3(3) � .64* (Bet $2)

.4 f3(8) � .6 f3(2) � .496 (Bet $3)

.4 f3(9) � .6 f3(1) � .40 (Bet $4)

.4 f3(10) � .6 f3(0) � .40 (Bet $5)

†Based on material by E. V. Denardo, personal communication.

Game 1

Bet b1(2) = $1

Bet b2(3) = $0

Bet b3(3) = $3

Bet b3(3) = $3

Bet b3(2) = $2

Bet b4(4) = $2

Done
I lose

Done
I lose

Done
I win

Done
I win

Done
I lose

Done
I lose

Bet b2(1) = $1

Win

Lose

Win

Lose

Game 2

Win

Lose

Win

Lose

Win

Lose
Win

Lose

Game 3 Game 4

F I G U R E 1
Ways Gambler Can

Reach $6

1 9 . 3 How to Maximize the Probability of a Favorable Event Occurring 1027

wH � wS. Martina’s goal is to maximize the probability of winning a point on which she
serves. Use dynamic programming to help Martina select an optimal serving strategy. Re-
member that if both serves are out of bounds, Martina loses the point.

Solution To maximize Martina’s probability of winning the point, we give her a reward of 1 if she
wins the point and a reward of 0 if she loses the point. We also define ft(t � 1, 2) to be
the probability that Martina wins a point if she plays optimally and is about to take her
t th serve. To determine the optimal serving strategy, we work backward, beginning with
f2. If Martina serves hard on the second serve, she will win the point (and earn a reward
of 1) with probability pHwH. Similarly, if she serves soft on the second serve, her expected
reward is pSwS. Thus, we have

f2 � max �
For the moment, let’s assume that

pSwS � pHwH (5)

If (5) holds, then Martina should serve soft on the second serve. In this situation, f2 �
pSwS.

To determine f1, we need to look at what happens on the first serve. If Martina serves
hard on the first serve, the events in Table 6 can occur, and Martina earns an expected re-
ward of pHwH � (1 � pH) f2. If Martina serves soft on the first serve, then the events in
Table 7 can occur, and Martina’s expected reward is pSwS � (1 � pS) f2. We now write
the following recursion for f1:

f1 � max �pHwH � (1 � pH) f2 (Serve hard)

pSwS � (1 � pS) f2 (Serve soft)

pHwH (Serve hard)

pSwS (Serve soft)

TA B L E 6
Computation of Expected Reward If First Serve Is Hard

Probability Expected Reward
Event of Event for Given Event

First serve in and pHwH 1
Martina wins point
First serve in and pH (1 � wH) 0
Martina loses point
First serve out of 1 � pH f2
bounds

TA B L E 7
Computation of Expected Reward If First Serve Is Soft

Probability Expected Reward
Event of Event for Given Event

First serve in and psws 1
Martina wins point
First serve in and ps (1 � ws) 0
Martina loses point
First serve out of 1 � ps f2
bounds

1028 C H A P T E R 1 9 Probabilistic Dynamic Programming

From this equation, we see that Martina should serve hard on the first serve if

pHwH � (1 � pH) f2 � pSwS � (1 � pS) f2 (6)

(If (6) is not satisfied, Martina should serve soft on the first serve.)
Continuing with the assumption that pSwS � wHpH (which implies that f2 � pSwS), we

may substitute f2 � pSwS into (6) to obtain the result that Martina should serve hard on
the first serve if

pHwH � (1 � pH)pSwS � pSwS � (1 � pS)pSwS

or
pHwH � pSwS(1 � pH � pS) (7)

For example, if pH � .60, pS � .90, wH � .55, and wS � .50, then (5) and (7) are both
satisfied, and Martina should serve hard on her first serve and soft on her second serve.
On the other hand, if pH � .25, pS � .80, wH � .60, and wS � .45, then both serves should
be soft. The reason for this is that in this case, the hard serve’s advantage from the fact
that wH exceeds wS is outweighed by the fact that a hard serve on the first serve greatly
increases the chances of a double fault.

To complete our analysis, we must consider the situation where (5) does not hold. We
now show that if

pHwH � pSwS (8)

Martina should serve hard on both serves. Note that if (8) holds, then f2 � max {pHwH,
pSwS} � pHwH, and Martina should serve hard on the second serve. Now (6) implies that
Martina should serve hard on the first serve if

pHwH � (1 � pH)pHwH � pSwS � (1 � pS)pHwH

Upon rearrangement, the last inequality becomes

pHwH(1 � pS � pH) � pSwS

Dividing both sides of the last inequality by pSwS shows that Martina should serve hard
on the first serve if

�
p
p
H

S

w
w

H

S
� (1 � pS � pH) � 1

After noting that pHwH � pSwS and (1 � pS � pH) � 1 (because pS � pH), we see that
the last inequality holds. Thus, we have shown that if pHwH � pSwS, Martina should serve
hard on both serves. This is reasonable, because if it is optimal to serve hard on the sec-
ond (and this requires pHwH � pSwS), then it should be optimal to serve hard on the first
serve, because the danger of double-faulting (which is the drawback to the hard serve) is
less immediate on the first serve. Of course, Example 4 could have been solved using a
decision tree; see Problem 10 of Section 13.4.

In our solution to Example
4, we have shown how Mar-
tina’s optimal strategy depends
on the values of the parame-
ters defining the problem. This
is a kind of sensitivity analy-
sis like the one applied to lin-
ear programming problems in

Chapters 5 and 6.

P R O B L E M S
Group A

1 Vladimir Ulanowsky is playing Keith Smithson in a
two-game chess match. Winning a game scores 1 match

1 9 . 4 Further Examples of Probabilistic Dynamic Programming Formulations 1029

point, and drawing a game scores �
1
2

� match point. After the
two games are played, the player with more match points is
declared the champion. If the two players are tied after two
games, they continue playing until someone wins a game
(the winner of that game will be the champion). During
each game, Ulanowsky can play one of two ways: boldly or
conservatively. If he plays boldly, he has a 45% chance of
winning the game and a 55% chance of losing the game. If
he plays conservatively, he has a 90% chance of drawing the
game and a 10% chance of losing the game. Ulanowsky’s
goal is to maximize his probability of winning the match.
Use dynamic programming to help him accomplish this
goal. If this problem is solved correctly, even though
Ulanowsky is the inferior player, his chance of winning the

match is over �
1
2

�. Explain this anomalous result.

2 Dickie Hustler has $2 and is going to toss an unfair coin
(probability .4 of heads) three times. Before each toss, he
can bet any amount of money (up to what he now has). If
heads comes up, Dickie wins the number of dollars he bets;
if tails comes up, he loses the number of dollars he bets.
Use dynamic programming to determine a strategy that
maximizes Dickie’s probability of having at least $5 after
the third coin toss.

Group B

3 Supppose that Army trails by 14 points in the Army–Navy

football game. Army’s guardian angel has assured the Army coach that his team will have the ball two more times during the
game and will score a touchdown (worth 6 points) each time it has the ball. The Army coach has also been assured that Navy
will not score any more points. Suppose a win is assigned a value of 1, a tie is .3, and a loss is 0. Army’s problem is to determine
whether to go for 1 or 2 points after each touchdown. A 1-point conversion is always successful, and a 2-point conversion is
successful only 40% of the time. The Army coach wants to maximize the expected reward earned from the outcome of the game.
Use dynamic programming to determine an optimal strategy. Then prove the following result: No matter what value is assigned
to a tie, it is never optimal to use the following strategy: Go for a 1-point conversion after the first touchdown and go for a 2-
point conversion after the second touchdown. Note that this (suboptimal) strategy is the one most coaches follow!

19.4 Further Examples of Probabilistic Dynamic Programming Formulations
Many probabilistic dynamic programming problems can be solved using recursions of the
following form (for max problems):

ft(i) � max
a �(expected reward during stage t|i, a) � �

j

p(j|i, a, t) ft�1(j)� (9)

In (9), ft(i) is the maximum expected reward that can be earned during stages t, t � 1, . . .
end of the problem, given that the state at the beginning of stage t is i. The max in (9) is
taken over all actions a that are feasible when the state at the beginning of stage t is i. In
(9), p(j|i, a, t) is the probability that the next period’s state will be j, given that the cur-
rent (stage t) state is i and action a is chosen. Hence, the summation in (9) represents the
expected reward from stage t � 1 to the end of the problem. By choosing a to maximize
the right-hand side of (9), we are choosing a to maximize the expected reward earned
from stage t to the end of the problem, and this is what we want to do. The following are
six examples of probabilistic dynamic programming formulations.

E X A M P L E 5

Sunco Oil has D dollars to allocate for drilling at sites 1, 2, . . . , T. If x dollars are allo-
cated to site t, the probability is qt(x) that oil will be found on site t. Sunco estimates that
if site t has any oil, it is worth rt dollars. Formulate a recursion that could be used to en-
able Sunco to maximize the expected value of all oil found on sites 1, 2, . . . , T.

Solution This is a typical resource allocation problem (see Example 1). Therefore, the stage should
represent the number of sites, the decision for site t is how many dollars to allocate to site
t, and the state is the number of dollars available to allocate to sites t, t � 1, . . . , T. We
therefore define ft(d) to be the maximum expected value of the oil that can be found on
sites t, t � 1, . . . , T if d dollars are available to allocate to sites t, t � 1, . . . , T.

We make the reasonable assumption that qT (x) is a nondecreasing function of x. If this
is the case, then at stage T, all the money should be allocated to site T. This yields

Sunco Oil Drilling

1030 C H A P T E R 1 9 Probabilistic Dynamic Programming

fT (d) � rTqT(d) � (1 � qT (d))0 � rTqT(d)

For t 	 T,

ft(d) � max
x

{rtqt(x) � ft�1(d � x)}

where x must satisfy 0 � x � d. The last recursion follows, because rtqt(x) is the expected
value of the reward for stage t, and since Sunco will have d � x dollars available for sites
t � 1, t � 2, . . . , T, ft�1(d � x) is the expected value of the oil that can be found by op-
timally drilling at sites t � 1, t � 2, . . . , T. To solve the problem, we would work back-
ward until f1(D) had been determined.

E X A M P L E 6

Each year, the owner of a lake must determine how many bass to capture and sell. Dur-
ing year t, a price pt will be received for each bass that is caught. If the lake contains b
bass at the beginning of year t, the cost of capturing x bass is ct(x|b). Between the time
that year t’s bass are caught and year t � 1 begins, the bass in the lake multiply by a ran-
dom factor D, where P(D � d) � q(d).

Formulate a dynamic programming recursion that can be used to determine a bass-
catching strategy that will maximize the owner’s net profit over the next ten years. At
present, the lake contains 10,000 bass.

Solution As in Example 8 of Chapter 18, the stage is the year, the state is the number of bass in
the lake at the beginning of the year, and the decision is how many bass to catch during
each year. We define ft(b) to be the maximum expected net profit that can be earned dur-
ing the years t, t � 1, . . . , 10 if the lake contains b bass at the beginning of year t. Then

f10(b) � max
x

{xp10 � c10(x|b)}

where 0 � x � b, and for t 	 10

ft(b) � max
x �xpt � ct(x|b) � �

d

q(d) ft�1(d(b � x))�
In this recursion, x must satisfy 0 � x � b. To justify the recursion for t 	 10, first note
that the profits during year t are (with certainty) xpt � ct(x|b). Then with probability q(d),
year t � 1’s state will be d(b � x). It then follows that if x bass are caught during year t,
the maximum expected net profit that can be earned during the years t � 1, t � 2, . . . ,
10 will be

�
d

q(d) ft�1(d(b � x))

Hence, the recursion chooses the number of bass during year t to maximize the sum of
year t profits and future profits. To use this recursion, we work backward until f1(10,000)
is computed. Then, after the number of bass in the lake at the beginning of year t is ob-
served, we use the recursion to determine the number of bass that should be caught dur-
ing year t.

E X A M P L E 7

When Sally Mutton arrives at the bank, 30 minutes remain on her lunch break. If Sally
makes it to the head of the line and enters service before the end of her lunch break, she
earns reward r. However, Sally does not enjoy waiting in lines, so to reflect her dislike for
waiting in line, she incurs a cost c for each minute she waits. During a minute in which
n people are ahead of Sally, there is a probability p(x|n) that x people will complete their
transactions. Suppose that when Sally arrives, 20 people are ahead of her in line. Use dy-

Waiting in Line

Bass Fishing

1 9 . 4 Further Examples of Probabilistic Dynamic Programming Formulations 1031

namic programming to determine a strategy for Sally that will maximize her expected net
revenue (reward � waiting costs).

Solution When Sally arrives at the bank, she must decide whether to join the line or to give up and
leave. At any later time, she may also decide to leave if it is unlikely that she will be
served by the end of her lunch break. If 1 minute remained, Sally’s decision would be sim-
ple: She should stay in line if and only if her expected reward exceeds the cost of wait-
ing for 1 minute (c). Then we can work backward to a problem with 2 minutes left, and
so on. We define ft (n) to be the maximum expected net reward that Sally can receive from
time t to the end of her lunch break if at time t, n people are ahead of her. We let t � 0
be the present and t � 30 be the end of the problem. Since t � 29 is the beginning of the
last minute of the problem, we write

f29(n) � max �
This follows because if Sally chooses to leave at time 29, she earns no reward and incurs
no more costs. On the other hand, if she stays at time 29, she will incur a waiting cost of
c (a revenue of � c) and with probability p(n|n) will enter service and receive a reward
r. Thus, if Sally stays, her expected net reward is rp(n|n) � c.

For t 	 29, we write

ft(n) � max �
The last recursion follows, because if Sally stays, she will earn an expected reward (as in
the t � 29 case) of rp(n|n) � c during the current minute, and with probability p(k|n),
there will be n � k people ahead of her; in this case, her expected net reward from time
t � 1 to time 30 will be ft�1(n � k). If Sally stays, her overall expected reward received
from time t � 1, t � 2, . . . , 30 will be

�
k	n

p(k|n) ft�1(n � k)

Of course, if n people complete their transactions during the current minute, the problem
ends, and Sally’s future net revenue will be zero.

To determine Sally’s optimal waiting policy, we work backward until f0(20) is com-
puted. If f0(20) is attained by “stay,” Sally stays and sees how many people are ahead of
her at time 1. She continues to stay until a situation arises for which the optimal action is
“leave” or she begins to be served. In either case, the problem terminates.

Problems in which the decision maker can terminate the problem by choosing a par-
ticular action are known as stopping rule problems; they often have a special structure
that simplifies the determination of optimal policies. See Ross (1983) for more informa-
tion on stopping rule problems.

E X A M P L E 8

E. J. Korvair Department Store is trying to determine an optimal cash management pol-
icy. During each day, the demand for cash may be described by a random variable D,
where p(D � d) � p(d). At the beginning of each day, the store sends an employee to the
bank to deposit or withdraw funds. Each bank transaction costs K dollars. Then E. J.’s de-
mand for cash is met by cash left from the previous day plus money withdrawn (or mi-
nus money deposited). At the end of the day, the store determines its cash balance at the
store. If the cash balance is negative, a shortage cost of s dollars per dollar short is in-
curred. If the ending balance is positive, a cost of i dollars per dollar held is incurred (be-

Cash Management Policy

(Leave)

(Stay)

0

rp(n|n) � c � �
k	n

p(k|n) ft�1(n � k)

(Leave)

(Stay)

0

rp(n|n) � c

1032 C H A P T E R 1 9 Probabilistic Dynamic Programming

cause of loss of interest that could have been earned by depositing cash in the bank). At
the beginning of day 1, the store has $10,000 cash on hand and a bank balance of
$100,000. Formulate a dynamic programming model that can be used to minimize the ex-
pected cost of filling the store’s cash needs for the next 30 days.

Solution To determine how much money should be withdrawn or deposited, E. J. needs to know
its cash on hand and bank balance at the beginning of the day. As usual, we let time be
the stage. At the beginning of each stage (or day), E. J. must decide how much to with-
draw from or deposit in the bank. We let ft(c, b) be the minimum expected cost incurred
by the store during days t, t � 1, . . . , 30, given that at the beginning of day t, the store
has c dollars cash at the store and b dollars in the bank.

We observe that

f30(c, b) � min
x �Kd(x) � �

d�c�x

p(d)(c � x � d)i � �
d�c�x

p(d)(d � c � x)s� (10)

Here, x is the amount of money transferred from the bank to the store (if x 	 0 money
is transferred from the store to the bank). Since the store cannot withdraw more than b
dollars from the bank or deposit more than c dollars in the bank, x must satisfy b � x �
�c. Also, in (10), d(0) � 0 and d(x) � 1 for x
 0. In short, Kd(x) picks up the transac-
tion cost (if there is a transaction). If d � c � x, the store will end the day with c � x �
d dollars, so a cost of i(c � x � d) is incurred (because of lost interest). Since this oc-
curs with probability p(d), the first sum in (10) represents the expected interest costs in-
curred during day 30. Also note that if d � c � x, the store will be d � c � x dollars
short, and a shortage cost of s(d � c � x) will be incurred. Again, this cost is incurred
with probability p(d). Hence, the second sum in (10) is the expected shortage cost in-
curred during day 30.

For t 	 30, we write

ft(c, b) � min
x �Kd(x) � �

d�c�x

p(d)(c � x � d)i
(11)

� �
d�c�x

p(d)(d � c � x)s � �
d

p(d) ft�1(c � x � d, b � x)�
As in (10), x must satisfy b � x � � c. Also, the term Kd(x) and the first two summa-
tions yield the expected cost incurred during day t. If day t demand is d, then at the be-
ginning of day t � 1, the store will have c � x � d dollars cash on hand and a bank bal-
ance of b � x. Thus, with probability p(d), the store’s expected cost during days t � 1,
t � 2, . . . , 30 will be ft�1(c � x � d, b � x). Weighting ft�1(c � x � d, b � x) by the
probability that day t demand will be d, we see that the last sum in (11) is the expected
cost incurred during days t � 1, t � 2, . . . , 30. Hence, (11) is correct. To determine the
optimal cash management policy, we would use (10) and (11) to work backward until
f1(10,000, 100,000) has been computed.

E X A M P L E 9

Robert Blue is trying to find a parking place near his favorite restaurant. He is approach-
ing the restaurant from the west, and his goal is to park as nearby as possible. The avail-
able parking places are pictured in Figure 2. Robert is nearsighted and cannot see ahead;
he can only see whether the space he is at now is empty. When Robert arrives at an empty
space, he must decide whether to park there or to continue to look for a closer space. Once
he passes a space, he cannot return to it. Robert estimates that the probability that space
t is empty is pt. If he does not end up with a parking space, he is embarrassed and incurs
a cost M (M is a big positive number). If he does park in space t, he incurs a cost |t |. Show
how Robert can use dynamic programming to develop a parking strategy that minimizes

Parking Spaces

1 9 . 4 Further Examples of Probabilistic Dynamic Programming Formulations 1033

his expected cost.

Solution If Robert is at space T, his problem is easy to solve: park in space T if it is empty; oth-
erwise, incur a cost of M. Then Robert can work backward until he determines what to
do at space �T. For this reason, we let the space Robert is at represent the stage. In or-
der to make a decision at any stage, all Robert must know is whether or not the space is
empty (if a space is not empty, he must continue). Thus, the state at any stage is whether
or not the space is empty. Of course, if the space is empty, Robert’s decision is whether
to take the space or to continue.

We define

ft(o) � minimum expected cost if Robert is at space t and space t is occupied

ft(e) � minimum expected cost if Robert is at space t and space t is empty

If Robert is at space T, he will park in the space if it is empty (incurring a cost T) or in-
cur a cost M if the space is occupied. Thus, we have fT (o) � M and fT (e) � T.

For t 	 T, we write

ft(o) � pt�1 ft�1(e) � (1 � pt�1) ft�1(o) (12)

ft(e) � min � (13)

To justify (12), note that if space t is occupied, Robert must next look at space t � 1. With
probability pt�1, space t � 1 will be empty; in this case, Robert’s expected cost will be
ft�1(e). Similarly, with probability (1 � pt�1), space t � 1 will be occupied, and Robert
will incur an expected cost of ft�1(o). Thus, Robert’s expected cost is

pt�1 ft�1(e) � (1 � pt�1) ft�1(o)

To justify (13), note that Robert can either take space t (incurring a cost of |t|) or con-
tinue. Thus, if Robert continues, his expected cost will be

pt�1 ft�1(e) � (1 � pt�1) ft�1(o)

Since Robert wants to minimize his expected cost, (13) follows. By using (12) and (13),
Robert can work backward to compute f�T(e) and f�T(o). Then he will continue until he
reaches an empty space at some location t for which the minimum in (13) is attained by
taking space t. If no such empty space is reached, Robert will not find a space, and he
will incur a cost M.

E X A M P L E 1 0

During month t(t � 1, 2, . . . , 60), expert safecracker Dirk Stack knows that he will be
offered a role in a bank job that will pay him dt dollars. There is, however, a probability
pt that month t’s job will result in his capture. If Dirk is captured, all his money will be
lost. Dirk’s goal is to maximize his expected asset position at the end of month 60. For-
mulate a dynamic programming recursion that will help Dirk accomplish his goal. At the
beginning of month 1, Dirk has $50,000.

Solution At the beginning of month 60, Dirk has no future to consider and his problem is easy to
solve, so we let time represent the stage. At the beginning of each month, Dirk must de-

Safecracker

(Take space t)

(Don’t take space t)

|t |

pt�1 ft�1(e) � (1 � pt�1) ft�1(o)

→ �T 1 � T 2 � T . . . �2 �1 0 1 2 . . . T

0 � Restaurant

F I G U R E 2
Location of

Parking Places

1034 C H A P T E R 1 9 Probabilistic Dynamic Programming

cide whether or not to take the current month’s job offer. In order to make this decision,
Dirk must know how much money he has at the beginning of the month. We define ft(d)
to be Dirk’s maximum expected asset position at the end of month 60, given that at the
beginning of month t, Dirk has d dollars. Then

f60(d) � max �
This result follows, because if Dirk takes the job during month 60, there is a probability
p60 that he will be caught and end up with zero dollars and a probability (1 � p60) that
he will not be caught and end up with d � d60 dollars. Of course, if Dirk does not take
the month 60 job, he ends month 60 with d dollars.

Extending this reasoning yields, for t 	 60,

ft(d) � max �
Note that if Dirk accepts month t’s job, there is a probability pt that he will be caught (and
end up with zero) and a probability (1 � pt) that he will successfully complete month t’s
job and earn dt dollars. In this case, Dirk will begin month t � 1 with d � dt dollars, and
his expected final cash position will be ft�1(d � dt). Of course, if Dirk rejects the month
t job, he begins month t � 1 with d dollars, and his expected final cash position will be
ft�1(d). Since Dirk wants to maximize his expected cash position at the end of month 60,
the recursion follows. By using the recursion, Dirk can work backward to compute
f1(50,000). Then he can decide whether to accept the month 1 job. Assuming he has not
been caught, he can then determine whether to accept the month 2 job, and so on.

As described in Section 18.8, spreadsheets can be used to solve dynamic programming

(Accept month t job)

(Reject month t job)

pt(0) � (1 � pt) ft�1(d � dt)

ft�1(d)

(Accept month 60 job)

(Reject month 60 job)

p60(0) � (1 � p60)(d � d60)

d

recursions. See Problems 14
and 15 for some examples of
how spreadsheets can be used
to solve PDPs.

P R O B L E M S
Group A

1 The space shuttle is about to go up on another flight.
With probability pt(z), it will use z type t fuel cells during
the flight. The shuttle has room for at most W fuel cells. If
at any time during the flight, all the type t fuel cells burn
out, a cost ct will be incurred. Assuming the goal is to
minimize the expected cost due to fuel cell shortages, set up
a dynamic programming model that could be used to
determine how to stock the space shuttle with fuel cells.
There are T different types of fuel cells.

2 At the beginning of each year, a firm observes its asset
position (call it d) and may invest any amount x (0 � x �
d) in a risky investment. During each year, the money
invested doubles with probability p and is completely lost
with probability 1 � p. Independently of this investment,
the firm’s asset position increases by an amount y with

probability qy (y may be negative). If the firm’s asset position
is negative at the beginning of a year, it cannot invest any
money during that year. The firm initially has $10,000 in
assets and wants to maximize its expected asset position ten
years from now. Formulate a dynamic programming
recursion that will help accomplish this goal.

3 Consider a machine that may be in any one of the states
0, 1, 2, At the beginning of each month, the state of the
machine is observed, and it is decided whether to replace or
keep the machine. If the machine is replaced, a new state 0
machine arrives instantaneously. It costs R dollars to replace
a machine. Each month that a state i machine is in operation,
a maintenance cost of c(i) is incurred. If a machine is in
state i at the beginning of a month, then with probability pij,
the machine will begin the next month in state j. At the
beginning of the first month, we own a state i0 machine.
Assuming that the interest rate is 12% per year, formulate a
dynamic programming recursion that could be used to
minimize the expected discounted cost incurred during the
next T months. Note that if we replace a machine at the
beginning of a month, we incur a maintenance cost of c(0)
during the month, and with probability p0i, we begin the
next month with a state i machine.

4 In the time interval between t and t � 1 seconds before
the departure of Braneast Airlines Flight 313, there is a
probability pt that the airline will receive a reservation for

1 9 . 4 Further Examples of Probabilistic Dynamic Programming Formulations 1035

the flight and a probability 1 � pt that the airline will receive
no reservation. The flight can seat up to 100 passengers. At
departure time, if r reservations have been accepted by the
airline, there is a probability q(y|r) that y passengers will
show up for the flight. Each passenger who boards the flight
adds $500 to Braneast’s revenues, but each passenger who
shows up for the flight and cannot be seated receives $200
in compensation. Formulate a dynamic programming
recursion to enable the airline to maximize its expected
revenue from Flight 313. Assume that no reservations are
received more than 100,000 seconds before flight time.

5 At the beginning of each week, a machine is either
running or broken down. If the machine runs throughout the
week, it earns revenues of $100. If the machine breaks down
during a week, it earns no revenue for that week. If the
machine is running at the beginning of the week, we may
perform maintenance on it to lessen the chance of a
breakdown. If the maintenance is performed, a running
machine has a .4 chance of breaking down during the week;
if maintenance is not performed, a running machine has a .7
chance of breaking down during the week. Maintenance
costs $20 per week. If the machine is broken down at the
beginning of the week, it must be replaced or repaired. Both
repair and replacement occur instantaneously. Repairing a
machine costs $40, and there is a .4 chance that the repaired
machine will break down during the week. Replacing a
broken machine costs $90, but the new machine is guaranteed
to run throughout the next week of operation. Use dynamic
programming to determine a repair, replacement, and
maintenance policy that maximizes the expected net profit
earned over a four-week period. Assume that the machine is
running at the beginning of the first week.

6 I own a single share of Wivco stock. I must sell my
share at the beginning of one of the next 30 days. Each day,
the price of the stock changes. With probability q(x), the
price tomorrow will increase by x% over today’s stock price
(x can be negative). For example, with probability q(5),
tomorrow’s stock price will be 5% higher than today’s. Show
how dynamic programming can be used to determine a
strategy that maximizes the expected revenue earned from
selling the share of Wivco stock. Assume that at the
beginning of the first day, the stock sells for $10 per share.

Group B

7 The National Cat Foundling Home encourages people to
adopt its cats, but (because of limited funds) it allows each
prospective owner to inspect only four cats before choosing
one of them to take home. Ten-year-old Sara is eager to
adopt a cat and agrees to abide by the following rules. A
randomly selected cat is brought for Sara to see, and then
Sara must either choose the cat or reject it. If the first cat is
rejected, Sara sees another randomly selected cat and must
accept or reject it. This procedure continues until Sara has
selected her cat. Once Sara rejects a cat, she cannot go back
later and choose it as her pet. Determine a strategy for Sara
that will maximize her probability of ending up with the cat
she actually prefers.

8 Consider the following probabilistic inventory model:
a At the beginning of each period, a firm observes its
inventory position.

b Then the firm decides how many units to produce
during the current period. It costs c(x) dollars to produce
x units during a period.
c With probability q(d), d units are demanded during
the period. From units on hand (including the current
period’s production), the firm satisfies as much of the
demand as possible. The firm receives r dollars for each
unit sold. For each unit of demand that is unsatisfied, a
penalty cost p is incurred. All unsatisfied demand is as-
sumed to be lost. For example, if the firm has 20 units
available and current demand is 30, a revenue of 20r
would be received, and a penalty of 10p would be
incurred.
d If ending inventory is positive, a holding cost of $1
per unit is incurred.
e The next period now begins.

The firm’s inital inventory is zero, and its goal is to minimize
the expected cost over a 100-period horizon. Formulate a
dynamic programming recursion that will help the firm
accomplish its goal.

9 Martha and Ken Allen want to sell their house. At the
beginning of each day, they receive an offer. We assume that
from day to day, the sizes of the offers are independent
random variables and that the probability that a given day’s
offer is for j dollars is pj . An offer may be accepted during
the day it is made or at any later date. For each day the
house remains unsold, a maintenance cost of c dollars is
incurred. The house must be sold within 30 days. Formulate
a dynamic programming recursion that Martha and Ken can
use to maximize their expected net profit (selling price �
maintenance cost). Assume that the maintenance cost for a
day is incurred before the current day’s offer is received and
that each offer is for an integer number of dollars.

10 An advertising firm has D dollars to spend on reaching
customers in T separate markets. Market t consists of kt

people. If x dollars are spent on advertising in market t, the
probability that a given person in market t will be reached
is pt(x). Each person in market t who is reached will buy ct

units of the product. A person who is not reached will not
buy any of the product. Formulate a dynamic programming
recursion that could be used to maximize the expected
number of units sold in T markets.

11 Georgia Stein is the new owner of the New York
Yankees. Each season, Georgia must decide how much
money to spend on the free agent draft. During each season,
Georgia can spend any amount of money on free agents up
to the team’s capital position at the beginning of the season.
If the Yankees finish in ith place during the season, their
capital position increases by R(i) dollars less the amount of
money spent in the free agent draft. If the Yankees finished
in ith place last season and spend d dollars on free agents
during the off-season, the probability that the Yankees will
finish in place j during the next season is pij(d)(j � 1, 2,
. . . , 7). Last season, the Yankees finished in first place, and
at the end of the season, they had a capital position of D
dollars. Formulate a dynamic programming recursion that
will enable the Yankees to maximize their expected cash
position at the end of T seasons.

12 Bailey Bliss is the campaign manager for Walter

1036 C H A P T E R 1 9 Probabilistic Dynamic Programming

Glenn’s presidential campaign. He has D dollars to allocate
to T winner-take-all primaries. If xt dollars are allocated to
primary t, then with probability pt(xt), Glenn will win
primary t and obtain vt delegates. With probability 1 �
pt(xt), Glenn loses primary t and obtains no delegates. Glenn
needs K delegates to be nominated. Use dynamic
programming to help Bliss maximize Glenn’s probability of

being nominated. What aspect of a real campaign does the
present formulation ignore?

13 At 7 A.M., eight people leave their cars for repair at
Harry’s Auto Repair Shop. If person i’s car is ready by time
t (7 A.M. � time 0, and so on), he will pay Harry ri(t) dollars.
For example, if person 2’s car must be ready by 2 P.M., we

may have r2(8) � 0. Harry estimates that with probability pi(t), it will take t hours to repair person i’s car. Formulate a dynamic
programming recursion that will enable Harry to maximize his expected revenue for the day. His workday ends at 5 P.M. �
time 10.

14 In Example 10, suppose pt � t/60 and dt � t. Using a spreadsheet, solve for Dirk’s optimal strategy. (Hint: The possible
states are 50, 51, . . . , 1,880 (thousands).)

15 In Example 9, assume T � 10 and pt � |t|/10. Using a spreadsheet, solve for Robert’s optimal strategy.

19.5 Markov Decision Processes†

To use dynamic programming in a problem for which the stage is represented by time,
one must determine the value of T, the number of time periods over which expected rev-
enue or expected profit is maximized (or expected costs are minimized). T is referred to
as the horizon length. For instance, in the equipment-replacement problem of Section 18.5,
if our goal is to minimize costs over a 30-year period, then T � 30. Of course, it may be
difficult for a decision maker to determine exactly the most suitable horizon length. In
fact, when a decision maker is facing a long horizon and is not sure of the horizon length,
it is more convenient to assume that the horizon length is infinite.

Suppose a decision maker’s goal is to maximize the expected reward earned over an
infinite horizon. In many situations, the expected reward earned over an infinite horizon
may be unbounded. For example, if for any state and decision, the reward earned during
a period is at least $3, then the expected reward earned during an infinite number of pe-
riods will, no matter what decisions are chosen, be unbounded. In this situation, it is not
clear how a decision maker should choose a decision. Two approaches are commonly used
to resolve the problem of unbounded expected rewards over an infinite horizon.

1 We can discount rewards (or costs) by assuming that a $1 reward received during the
next period will have the same value as a reward of b dollars (0 	 b 	 1) received dur-
ing the current period. This is equivalent to assuming that the decision maker wants to
maximize expected discounted reward. Let M be the maximum reward (over all possible
states and choices of decisions) that can be received during a single period. Then the max-
imum expected discounted reward (measured in terms of current period dollars) that can
be received over an infinite period horizon is

M � Mb � Mb2 � � � � � �
1 �

M
b

� 	 ∞

Thus, discounting rewards (or costs) resolves the problem of an infinite expected reward.

2 The decision maker can choose to maximize the expected reward earned per period.
Then he or she would choose a decision during each period in an attempt to maximize
the average reward per period as given by

E � lim
n→∞ �reward earned during periods 1, 2, . . . , n

�����

†This section covers topics that may be omitted with no loss of continuity.

1 9 . 5 Markov Decision Processes 1037

Thus, if a $3 reward were earned each period, the total reward earned during an infinite num-
ber of periods would be unbounded, but the average reward per period would equal $3.

In our discussion of infinite horizon problems, we choose to resolve the problem of un-
bounded expected rewards by discounting rewards by a factor b per period. A brief dis-
cussion of the criterion of average reward per period is also included. Infinite horizon
probabilistic dynamic programming problems are called Markov decision processes (or
MDPs).

Description of an MDP

An MDP is described by four types of information:

1 State space

2 Decision set

3 Transition probabilities

4 Expected rewards

State Space

At the beginning of each period, the MDP is in some state i, where i is a member of S �
{1, 2, . . . , N}. S is referred to as the MDP’s state space.

Decision Set

For each state i, there is a finite set of allowable decisions, D(i).

Transition Probabilities

Suppose a period begins in state i, and a decision d � D(i) is chosen. Then with proba-
bility p(j|i, d), the next period’s state will be j. The next period’s state depends only on
the current period’s state and on the decision chosen during the current period (not on pre-
vious states and decisions). This is why we use the term Markov decision process.

Expected Rewards

During a period in which the state is i and a decision d � D(i) is chosen, an expected re-
ward of rid is received.

TA B L E 8
Next Period’s States of Machines

Present State
Probability That Machine Begins Next Week As

of Machine Excellent Good Average Bad

Excellent .7 .3 — —
Good — .7 .3 —
Average — — .6 .4
Bad — — — 1.0

until replaced

E X A M P L E 1 1

At the beginning of each week, a machine is in one of four conditions (states): excellent
(E), good (G), average (A), or bad (B). The weekly revenue earned by a machine in each
type of condition is as follows: excellent, $100; good, $80; average, $50; bad, $10. After
observing the condition of a machine at the beginning of the week, we have the option of
instantaneously replacing it with an excellent machine, which costs $200. The quality of
a machine deteriorates over time, as shown in Table 8. For this situation, determine the
state space, decision sets, transition probabilities, and expected rewards.

Solution The set of possible states is S � {E, G, A, B}. Let

R � replace at beginning of current period

NR � do not replace during current period

Since it is absurd to replace an excellent machine, we write

D(E) � {NR} D(G) � D(A) � D(B) � {R, NR}

We are given the following transition probabilities:

p(E|NR, E) � .7 p(G|NR, E) � .3 p(A|NR, E) � 0 p(B|NR, E) � 0

p(E|NR, G) � 0 p(G|NR, G) � .7 p(A|NR, G) � .3 p(B|NR, G) � 0

p(E|NR, A) � 0 p(G|NR, A) � 0 p(A|NR, A) � .6 p(B|NR, A) � .4

p(E|NR, B) � 0 p(G|NR, B) � 0 p(A|NR, B) � 0 p(B|NR, B) � 1

If we replace a machine with an excellent machine, the transition probabilities will be
the same as if we had begun the week with an excellent machine. Thus,

p(E|G, R) � p(E|A, R) � p(E|B, R) � .7

p(G|G, R) � p(G|A, R) � p(G|B, R) � .3

p(A|G, R) � p(A|A, R) � p(A|B, R) � 0

p(B|G, R) � p(B|A, R) � p(B|B, R) � 0

If the machine is not replaced, then during the week, we receive the revenues given in the
problem. Therefore, rE,NR � $100, rG,NR � $80, rA,NR � $50, and rB,NR � $10. If we re-
place a machine with an excellent machine, then no matter what type of machine we had at
the beginning of the week, we receive $100 and pay a cost of $200. Thus, rE,R � rG,R �
rA,R � rB,R � �$100.

In an MDP, what criterion should be used to determine the correct decision? Answer-
ing this question requires that we discuss the idea of an optimal policy for an MDP.

D E F I N I T I O N ■

Period t’s decision may depend on the prior history of the process. Thus, period t’s de-
cision can depend on the state during periods 1, 2, . . . , t and the decisions chosen during
periods 1, 2, . . . , t � 1.

D E F I N I T I O N ■ A policy � is a stationary policy if whenever the state is i, the policy � chooses
(independently of the period) the same decision (call this decision �(i)). ■

A policy is a rule that specifies how each period’s decision is chosen. ■

Machine Replacement

1038 C H A P T E R 1 9 Probabilistic Dynamic Programming

1 9 . 5 Markov Decision Processes 1039

We let d represent an arbitrary policy and
 represent the set of all policies. Then

Xt � random variable for the state of MDP at the beginning of period t (for
example, X2, X3, . . . , Xn)

X1 � given state of the process at beginning of period 1 (initial state)

dt � decision chosen during period t

Vd (i) � expected discounted reward earned during an infinite number of periods, given
that at beginning of period 1, state is i and stationary policy will be d

Then

Vd (i) � Ed ��
t�∞

t�1

bt�1rXtdt
|X1 � i�

where Ed (bt�1rXtdt
|X1 � i) is the expected discounted reward earned during period t,

given that at the beginning of period 1, the state is i and stationary policy d is followed.
In a maximization problem, we define

V(i) � max
d�

Vd (i) (14)

In a minimization problem, we define

V(i) � min
d�

Vd (i)

D E F I N I T I O N ■

The existence of a single policy d* that simultaneously attains all N maxima in (14) is
not obvious. If the rid’s are bounded, Blackwell (1962) has shown that an optimal policy
exists, and there is always a stationary policy that is optimal. (Even if the rid’s are not
bounded, an optimal policy may exist.)

We now consider three methods that can be used to determine an optimal stationary
policy:

1 Policy iteration

2 Linear programming

3 Value iteration, or successive approximations

Policy Iteration

Value Determination Equations

Before we can explain the policy iteration method, we need to determine a system of lin-
ear equations that can be used to find Vd (i) for i � S and any stationary policy d. Let d(i)
be the decision chosen by the stationary policy d whenever the process begins a period in
state i. Then Vd (i) can be found by solving the following system of N linear equations,
the value determination equations:

If a policy �* has the property that for all i � S

V(i) � V�*(i)

then �* is an optimal policy. ■

1040 C H A P T E R 1 9 Probabilistic Dynamic Programming

Vd (i) � ri,d(i) � b �
j�N

j�1

p(j|i, d(i))Vd(j) (i � 1, 2, . . . , N) (15)

To justify (15), suppose we are in state i and we follow a stationary policy d. The current
period is period 1. Then the expected discounted reward earned during an infinite num-
ber of periods consists of ri,d(i) (the expected reward received during the current period)
plus b (expected discounted reward, to beginning of period 2, earned from period 2 on-
ward). But with probability p(j|i,d(i)), we will begin period 2 in state j and earn an ex-
pected discounted reward, back to period 2, of Vd (j). Thus, the expected discounted re-
ward, discounted back to the beginning of period 2 and earned from the beginning of
period 2 onward, is given by

�
j�N

j�1

p(j|i, d(i))Vd (j)

Equation (15) now follows.
To illustrate the use of the value determination equations, we consider the following

stationary policy for the machine replacement example:

d(E) � d(G) � NR d(A) � d(B) � R

This policy replaces a bad or average machine and does not replace a good or excellent
machine. For this policy, (15) yields the following four equations:

Vd (E) � 100 � .9(.7Vd (E) � .3Vd (G))

Vd (G) � 80 � .9(.7Vd (G) � .3Vd (A))

Vd (A) � �100 � .9(.7Vd (E) � .3Vd (G))

Vd (B) � �100 � .9(.7Vd (E) � .3Vd (G))

Solving these equations yields Vd (E) � 687.81, Vd (G) � 572.19, Vd (A) � 487.81, and
Vd (B) � 487.81.

Howard’s Policy Iteration Method

We now describe Howard’s (1960) policy iteration method for finding an optimal station-
ary policy for an MDP (max problem).

Step 1 Policy evaluation—Choose a stationary policy d and use the value determination
equations to find Vd (i)(i � 1, 2, . . . , N).

Step 2 Policy improvement—For all states i � 1, 2, . . . , N, compute

Td (i) � max
d�D(i) �rid � b �

j�N

j�1

p(j|i, d)Vd (j)� (16)

Since we can choose d � d(i) for i � 1, 2, . . . , N, Td(i) � Vd(i). If Td(i) � Vd(i) for i �
1, 2, . . . N, then d is an optimal policy. If Td (i) � Vd (i) for at least one state, then d is not
an optimal policy. In this case, modify d so that the decision in each state i is the deci-
sion attaining the maximum in (16) for Td (i). This yields a new stationary policy d� for
which Vd�(i) � Vd (i) for i � 1, 2, . . . N, and for at least one state i�, Vd�(i�) � Vd (i�). Re-
turn to step 1, with policy d� replacing policy d.

In a minimization problem, we replace max in (16) with min. If Td (i) � Vd (i) for i �
1, 2, . . . , N, then d is an optimal policy. If Td (i) 	 Vd (i) for at least one state, then d is

not an optimal policy. In this case, modify d so that the decision in each state i is the de-
cision attaining the minimum in (16) for Td (i). This yields a new stationary policy d� for
which Vd�(i) � Vd (i) for i � 1, 2, . . . N, and for at least one state i�, Vd�(i�) 	 Vd (i�). Re-
turn to step 1, with policy d� replacing policy d.

The policy iteration method is guaranteed to find an optimal policy for the machine re-
placement example after evaluating a finite number of policies. We begin with the fol-
lowing stationary policy:

d(E) � d(G) � NR d(A) � d(B) � R

For this policy, we have already found that Vd (E) � 687.81, Vd (G) � 572.19, Vd (A) �
487.81, and Vd (B) � 487.81. We now compute Td (E), Td (G), Td (A), and Td (B). Since NR
is the only possible decision in E,

Td (E) � Vd (E) � 687.81

and Td (E) is attained by the decision NR.

Td (G) � max �
Thus, Td (G) � 572.19 is attained by the decision NR.

Td (A) � max �
Thus, Td (A) � 489.03 is attained by the decision NR.

Td (B) � max �
Thus, Td (B) � Vd (B) � 487.81. We have found that Td (E) � Vd (E), Td (G) � Vd (G),
Td (B) � Vd (B), and Td (A) � Vd (A). Thus, the policy d is not optimal, and the policy d�
given by d�(E) � d�(G) � d�(A) � NR, d�(B) � R, is an improvement over d. We now
return to step 1 and solve the value determination equations for d�. From (15), the value
determination equations for d� are

Vd�(E) � 100 � .9(.7Vd�(E) � .3Vd�(G))

Vd�(G) � 80 � .9(.7Vd�(G) � .3Vd�(A))

Vd�(A) � 50 � .9(.6Vd�(A) � .4Vd�(B))

Vd�(B) � �100 � .9(.7Vd�(E) � .3Vd�(G))

Solving these equations, we obtain Vd�(E) � 690.23, Vd�(G) � 575.50, Vd�(A) � 492.35,
and Vd�(B) � 490.23. Observe that in each state i, Vd�(i) � Vd (i). We now apply the pol-
icy iteration procedure to d�. We compute

Td�(E) � Vd�(E) � 690.23

Td�(G) � max �
Thus, Td�(G) � Vd�(G) � 575.50 is attained by NR.

Td�(A) � max �
Thus, Td�(A) � Vd�(A) � 492.35 is attained by NR.

(R)

(NR)

�100 � .9(.7Vd�(E) � .3Vd�(G)) � 490.23

50 � .9(.6Vd�(A) � .4Vd�(B)) � Vd�(A) � 492.35*

(R)

(NR)

�100 � .9(.7Vd �(E) � .3Vd �(G)) � 490.23

80 � .9(.7Vd�(G) � .3Vd�(A)) � Vd�(G) � 575.50*

(R)

(NR)

�100 � .9(.7Vd (E) � .3Vd (G)) � Vd (B) � 487.81*

10 � .9Vd (B) � 449.03

(R)

(NR)

�100 � .9(.7Vd (E) � .3Vd (G)) � 487.81

50 � .9(.6Vd (A) � .4Vd (B)) � 489.03*

(R)

(NR)

�100 � .9(.7Vd (E) � .3Vd (G)) � 487.81

80 � .9(.7Vd (G) � .3Vd (A)) � Vd (G) � 572.19*

1 9 . 5 Markov Decision Processes 1041

1042 C H A P T E R 1 9 Probabilistic Dynamic Programming

Td�(B) � max �
Thus, Td�(B) � Vd�(B) � 490.23 is attained by R.

For each state i, Td�(i) � Vd�(i). Thus, d� is an optimal stationary policy. To maximize
expected discounted rewards (profits), a bad machine should be replaced, but an excel-
lent, good, or average machine should not be replaced. If we began period 1 with an ex-
cellent machine, an expected discounted reward of $690.23 could be earned.

Linear Programming

It can be shown (see Ross (1983)) that an optimal stationary policy for a maximization
problem can be found by solving the following LP:

min z � V1 � V2 � � � � � VN

s.t. Vi � b �
j�N

j�1

p(j|i, d)Vj � rid (For each state i and each d � d(i))

s.t. All variables urs

For a minimization problem, we solve the following LP:

max z � V1 � V2 � � � � � VN

s.t. Vi � b �
j�N

j�1

p(j|i, d)Vj � rid (For each state i and each d � d(i))

s.t. All variables urs

The optimal solution to these LPs will have Vi � V(i). Also, if a constraint for state i and
decision d is binding (has no slack or excess), then decision d is optimal in state i.

R E M A R K S 1 In the objective function, the coefficient of each Vi may be any positive number.
2 If all the Vi’s are nonnegative (this will surely be the case if all the rid’s are nonnegative), we
may assume that all variables are nonnegative. If it is possible for some state to have V (i) negative,
then we must replace each variable Vi by Vi� � Vi�, where both Vi� and Vi� are nonnegative.
3 With LINDO, we may allow V(i) to be negative with the statement FREE Vi. With LINGO, use
the @FREE statement to allow a variable to assume a negative value.

Our machine replacement example yields the following LP:

min z � VE � VG � VA � VB

s.t. VE � 100 � .9(.7VE � .3VG) (NR in E)

s.t. VG � 80 � .9(.7VG � .3VA) (NR in G)

s.t. VG � �100 � .9(.7VE � .3VG) (R in G)

s.t. VA � 50 � .9(.6VA � .4VB) (NR in A)

s.t. VA � �100 � .9(.7VE � .3VG) (R in A)

s.t. VB � 10 � .9VB (NR in B)

s.t. VB � �100 � .9(.7VE � .3VG) (R in B)

All variables urs

The LINDO output for this LP yields VE � 690.23, VG � 575.50, VA � 492.35, and

(R)

(NR)

�100 � .9(.7Vd�(E) � .3Vd�(G)) � Vd (B) � 490.23*

10 � .9Vd�(B) � 451.21

1 9 . 5 Markov Decision Processes 1043

VB � 490.23. These values agree with those found via the policy iteration method. The
LINDO output also indicates that the first, second, fourth, and seventh constraints have
no slack. Thus, the optimal policy is to replace a bad machine and not to replace an ex-
cellent, good, or average machine.

Value Iteration

There are several versions of value iteration (see Denardo (1982)). We discuss for a max-
imization problem the simplest value iteration scheme, also known as successive approx-
imations. Let Vt(i) be the maximum expected discounted reward that can be earned dur-
ing t periods if the state at the beginning of the current period is i. Then

Vt(i) � max
d�D(i) �rid � b �

j�N

j�1

p(j|i, d)Vt�1(j)� (t � 1)

V0(i) � 0

This result follows, because during the current period, we earn an expected reward (in cur-
rent dollars) of rid, and during the next t � 1 periods, our expected discounted reward (in
terms of period 2 dollars) is

�
j�N

j�1

p(j|i, d)Vt�1(j)

Let dt(i) be the decision that must be chosen during period 1 in state i to attain Vt(i). For
an MDP with a finite state space and each D(i) containing a finite number of elements,
the most basic result in successive approximations states that for i � 1, 2, . . . , N,

|Vt(i) � V(i)| � �
1 �

bt

b
� max

i,d
|rid|

Recall that V(i) is the maximum expected discounted reward earned during an infinite
number of periods if the state is i at the beginning of the current period. Then

lim
t→∞

dt(i) � d*(i)

where d*(i) defines an optimal stationary policy. Since b 	 1, for t sufficiently large, Vt(i)
will come arbitrarily close to V(i). For instance, in the machine replacement example,
b � .9 and max |rid | � 100. Thus, for all states, V50(i) would differ by at most
(.9)50(�

1
.1
0
0
0

�) � $5.15 from V(i). The equation

lim
t→∞

dt(i) � d*(i)

implies that for t sufficiently large, the decision that is optimal in state i for a t-period
problem is also optimal in state i for an infinite horizon problem. This result is reminis-
cent of the turnpike theorem result for the knapsack problem that was discussed in Chap-
ter 6.

Unfortunately, there is usually no easy way to determine a t* such that for all i and
t � t*, dt(i) � d*(i). (See Denardo (1982) for a partial result in this direction.) Despite
this fact, value iteration methods usually obtain a satisfactory approximation to the V(i)
and d*(i) with less computational effort than is needed by the policy iteration method or
by linear programming. Again, see Denardo (1982) for a discussion of this matter.

We illustrate the computation of V1 and V2 for the machine replacement example:

1044 C H A P T E R 1 9 Probabilistic Dynamic Programming

V1(E) � 100 (NR)

V1(G) � max � � 80

V1(A) � max � � 50

V1(B) � max � � 10

The * indicates the action attaining V1(i). Then

V2(E) � 100 � .9(.7V1(E) � .3V1(G)) � 184.6 (NR)

V2(G) � max �
V2(A) � max �
V2(B) � max �

The * now indicates the decision d2(i) attaining V2(i). Observe that after two iterations of
successive aproximations, we have not yet come close to the actual values of V(i) and have
not found it optimal to replace even a bad machine.

In general, if we want to ensure that all the Vt(i)’s are within e of the corresponding
V(i), we would perform t* iterations of successive approximations, where

�
1

b

�

t*

b
� max

i,d
|rid| 	 e

There is no guarantee, however, that after t* iterations of successive approximations, the
optimal stationary policy will have been found.

Maximizing Average Reward per Period

We now briefly discuss how linear programming can be used to find a stationary policy
that maximizes the expected per-period reward earned over an infinite horizon. Consider
a decision rule or policy Q that chooses decision d � D(i) with probability qi(d) during
a period in which the state is i. A policy Q will be a stationary policy if each qi(d) equals
0 or 1. To find a policy that maximizes expected reward per period over an infinite hori-
zon, let pid be the fraction of all periods in which the state is i and the decision d � D(i)
is chosen. Then the expected reward per period may be written as

�
i�N

i�1
�

d�D(i)

pidrid (17)

What constraints must be satisfied by the pid? First, all pid’s must be nonnegative. Second,

�
i�N

i�1
�

d�D(i)

pid � 1

must hold. Finally, the fraction of all periods during which a transition occurs out of state

(NR)

(R)

10 � .9V1(B) � 19*

�100 � .9(.7V1(E) � .3V1(G)) � �15.4

(NR)

(R)

50 � .9(.6V1(A) � .4V1(B)) � 80.6*

�100 � .9(.7V1(E) � .3V1(G)) � �15.4

(NR)

(R)

80 � .9(.7V1(G) � .3V1(A)) � 143.9*

�100 � .9(.7V1(E) � .3V1(G)) � �15.4

(NR)

(R)

10*

�100

(NR)

(R)

50*

�100

(NR)

(R)

80*

�100

1 9 . 5 Markov Decision Processes 1045

j must equal the fraction of all periods during which a transition occurs into state j. This
is identical to the restriction on steady-state probabilities for Markov chains discussed in
Section 17.5. This yields (for j � 1, 2, . . . , n),

�
d�D(j)

pjd(1 � p(j| j, d)) � �
d�D(i)

�
i
j

pid p(j|i, d)

Rearranging the last equality yields (for j � 1, 2, . . . , N)

�
d�D(j)

pjd � �
d�D(i)

�
i�N

i�1

pid p(j|i, d)

Putting together our objective function (17) and all the constraints yields the following
LP:

max z � �
i�N

i�1
�

d�D(i)

pidrid

s.t. �
i�N

i�1
�

d�D(i)

pid � 1

s.t. �
d�D(j)

pjd � �
d�D(i)

�
i�N

i�1

pidp(j|i, d)

(18)

(j � 1, 2, . . . , N)

All pid�s � 0

It can be shown that this LP has an optimal solution in which for each i, at most one
pid � 0. This optimal solution implies that expected reward per period is maximized by
a solution in which each qi(d) equals 0 or 1. Thus, the optimal solution to (18) will occur
for a stationary policy. For states having pid � 0, any decision may be chosen without af-
fecting the expected reward per period.

We illustrate the use of (18) for Example 11 (machine replacement). For this example,
(18) yields

max z � 100pENR � 80pGNR � 50pANR � 10pBNR � 100(pGR � pAR � pBR)

s.t. pENR � pGNR � pANR � pBNR � pGR � pAR � pBR � 1

s.t. pENR � .7(pENR � pGR � pAR � pBR)

s.t. pGNR � pGR � .3(pGR � pAR � pBR � pENR) � .7pGNR

s.t. pAR � pANR � .3pGNR � .6pANR

s.t. pBR � pBNR � pBNR � .4pANR

Using LINDO, we find the op-
timal objective function value
for this LP to be z � 60. The
only nonzero decision vari-
ables are pENR � .35, pGNR

� .50, pAR � .15. Thus, an
average of $60 profit per pe-
riod can be earned by not re-
placing an excellent or good
machine but replacing an av-
erage machine. Since we are
replacing an average machine,

the action chosen during a pe-
riod in which a machine is in
bad condition is of no impor-
tance.

P R O B L E M S
Group A

1 A warehouse has an end-of-period capacity of 3 units.
During a period in which production takes place, a setup
cost of $4 is incurred. A $1 holding cost is assessed against

1046 C H A P T E R 1 9 Probabilistic Dynamic Programming

each unit of a period’s ending inventory. Also, a variable
production cost of $1 per unit is incurred. During each
period, demand is equally likely to be 1 or 2 units. All
demand must be met on time, and b � .8. The goal is to
minimize expected discounted costs over an infinite horizon.

a Use the policy iteration method to determine an op-
timal stationary policy.
b Use linear programming to determine an optimal
stationary policy.
c Perform two iterations of value iteration.

2 Priceler Auto Corporation must determine whether or
not to give consumers 8% or 11% financing on new cars. If
Priceler gives 8% financing during the current month, the
probability distribution of sales during the current month
will be as shown in Table 9. If Priceler gives 11% financing
during the current month, the probability distribution of
sales during the current month will be as shown in Table 10.
“Good” sales represents 400,000 sales per month, “bad”
sales represents 300,000 sales per month. For example, if
last month’s sales were bad and Priceler gives 8% financing
during the current month, there is a .40 chance that sales

will be good during the current month. At 11% financing
rates, Priceler earns $1,000 per car, and at 8% financing,
Priceler earns $800 per car. Priceler’s goal is to maximize
expected discounted profit over an infinite horizon (use
b � .98).

a Use the policy iteration method to determine an op-
timal stationary policy.
b Use linear programming to determine an optimal
stationary policy.
c Perform two iterations of value iteration.
d Find a policy that maximizes average profit per
month.

3 Suppose you are using the policy iteration method to
determine an optimal policy for an MDP. How might you
use LINDO to solve the value determination equations?

Group B

4 During any day, I may own either 0 or 1 share of a stock.
The price of the stock is governed by the Markov chain
shown in Table 11. At the beginning of a day in which I own
a share of stock, I may either sell it at today’s price or keep
it. At the beginning of a day in which I don’t own a share
of stock, I may either buy a share of stock at today’s price
or not buy a share. My goal is to maximize my expected
discounted profit over an infinite horizon (use b � .95).

a Use the policy iteration method to determine an op-
timal stationary policy.
b Use linear programming to determine an optimal

TA B L E 9

Current Month’s

Last Month’s
Sales

Sales Good Bad

Good .95 .05
Bad .40 .60

TA B L E 10

Current Month’s

Last Month’s
Sales

Sales Good Bad

Good .80 .20
Bad .20 .80

TA B L E 11

Today’s
Tomorrow’s Price

Price $0 $1 $2 $3

$0 .5 .3 .1 .1
$1 .1 .5 .2 .2
$2 .2 .1 .5 .2
$3 .1 .1 .3 .5

stationary policy.
c Perform two iterations of value iteration.
d Find a policy that maximizes average daily profit.

5 Ethan Sherwood owns two printing presses, on which he prints two types of jobs. At the beginning of each day, there is a
.5 probability that a type 1 job will arrive, a .1 probability that a type 2 job will arrive, and a .4 probability that no job will
arrive. Ethan receives $400 for completing a type 1
job and $200 for completing a type 2 job. (Payment for each job is received in advance.) Each type of job takes an average
of three days to complete. To model this, we assume that each day a job is in press there is a �

1
3

� probability that its printing
will be completed at the end of the day. If both presses are busy at the beginning of the day, any arriving job is lost to the
system. The crucial decision is when (if ever) Ethan should accept the less profitable type 2 job. Ethan’s goal is to maximize
expected discounted profit (use b � .90).

a Use the policy iteration method to determine an optimal stationary policy.
b Use linear programming to determine an optimal stationary policy.
c Perform two iterations of value iteration.

S U M M A R Y Key to Formulating Probabilistic Dynamic
Programming Problems (PDPs)

Suppose the possible states during period t � 1 are s1, s2, . . . sn, and the probability that
the period t � 1 state will be si is pi. Then the minimum expected cost incurred during
periods t � 1, t � 2, . . . , end of the problem is

�
i�n

i�1

pi ft�1(si)

where ft�1(si) is the minimum expected cost incurred from period t � 1 to the end of the
problem, given that the state during period t � 1 is si.

Maximizing the Probability of a Favorable Event Occurring

To maximize the probability that a favorable event will occur, assign a reward of 1 if the
favorable event occurs and a reward of 0 if it does not occur.

Markov Decision Processes

A Markov decision process (MDP) is simply an infinite-horizon PDP. Let Vd (i) be the
expected discounted reward earned during an infinite number of periods, given that at the
beginning of period 1, the state is i and the stationary policy d is followed.

For a maximization problem, we define

V(i) � max
d�D

Vd (i)

For a minimization problem, we define

V(i) � min
d�D

Vd (i)

If a policy d* has the property that for all i � S,

V(i) � Vd*(i)

then d* is an optimal policy. We can use the value determination equations to deter-
mine Vd (i):

Vd (i) � ri,d(i) � b �
j�N

j�1

p(j|i, d(i))Vd (j) (i � 1, 2, . . . , N) (15)

An optimal policy for an MDP may be determined by one of three methods:

1 Policy iteration

2 Linear programming

3 Value iteration, or successive approximations

Policy Iteration

Summary 1047

1048 C H A P T E R 1 9 Probabilistic Dynamic Programming

A summary of Howard’s policy iteration method for a maximization problem follows.

Step 1 Policy evaluation—Choose a stationary policy d and use the value determination
equations to find Vd (i)(i � 1, 2, . . . , N).

Step 2 Policy improvement—For all states i � 1, 2, . . . , N, compute

Td (i) � max
d�D(i) �rid � b �

j�N

j�1

p(j |i, d)Vd (j)� (16)

Since we can choose d � d(i) for i � 1, 2, . . . , N, Td(i) � Vd(i). If Td(i) � Vd(i) for i �
1, 2, . . . , N, then d is an optimal policy. If Td (i) � Vd (i) for at least one state, then d is
not an optimal policy. In this case, modify d so that the decision in each state i is the de-
cision attaining the maximum in (16) for Td (i). This yields a new stationary policy d� for
which Vd�(i) � Vd (i) for i � 1, 2, . . . , N, and for at least one state i�, Vd�(i�) � Vd (i�).
Return to step 1, with policy d� replacing policy d.

Linear Programming

In a maximization problem, V(i) for each state may be determined by solving the follow-
ing LP:

min z � V1 � V2 � � � � � VN

s.t. Vi � b �
j�N

j�1

p(j |i, d)Vj � rid (For each state i and each d � D(i))

All variables urs

If the constraint for state i and decision d has no slack, then decision d is optimal in state i.

Value Iteration, or
Successive Approximations

Let Vt(i) be the maximum ex-
pected discounted reward that
can be earned during t peri-
ods if the state at the begin-
ning of the current period is i.
Then

Vt(i) � max
d�D(i) �rid � b �

j�N

j�1p(j|i, d)Vt�1(j)� (t � 1)

V0(i) � 0

As t grows large, Vt(i) will ap-
proach V(i). For t sufficiently
large, the decision that is opti-
mal in state i for a t-period
problem is also optimal in state
i for an infinite-horizon prob-
lem.

R E V I E W P R O B L E M S
Group A

1 A company has five sales representatives available for
assignment to three sales districts. The sales in each district
during the current year depend on the number of sales
representatives assigned to the district and on whether the
national economy has a bad or good year (see Table 12). In

TA B L E 12

No. of Sales
Sales (millions)

Reps Assigned District District District
to District 1 2 3

0 $1, $4 $2, $5 $3, $4
1 $2, $6 $4, $6 $5, $5
2 $3, $7 $5, $6 $6, $7
3 $4, $8 $6, $6 $7, $7

Review Problems 1049

the Sales column for each district, the first number represents
sales if the national economy had a bad year, and the second
number represents sales if the economy had a good year.
There is a .3 chance that the national economy will have a
good year and a .7 chance that the national economy will
have a bad year. Use dynamic programming to determine an
assignment of sales representatives to districts that
maximizes the company’s expected sales.

2 At the beginning of each period, a company must
determine how many units to produce. A setup cost of $5 is
incurred during each period in which production takes place.
The production of each unit also incurs a $2 variable cost.
All demand must be met on time, and there is a $1 per-unit
holding cost on each period’s ending inventory. During each
period, it is equally likely that demand will equal 0 or 1 unit.
Assume that each period’s ending inventory cannot exceed
2 units.

a Use dynamic programming to minimize the expected
costs incurred during three periods. Assume that the ini-
tial inventory is 0 units.
b Now suppose that each unit demanded can be sold
for $4. If the demand is not met on time, the sale is lost.
Use dynamic programming to maximize the expected
profit earned during three periods. Assume that the ini-
tial inventory is 0 units.
c In parts (a) and (b), is an (s, S) policy optimal?

3 At Hot Dog Queen Restaurant, the following sequence
of events occurs during each minute:

a With probability p, a customer arrives and waits in
line.
b Hot Dog Queen determines the rate s at which cus-
tomers are served. If any customers are in the restaurant,
then with probability s, one of the customers completes
service and leaves the restaurant. It costs c(s) dollars per
period to serve customers at a rate s. Each customer
spends R dollars, and the customer’s food costs Hot Dog
Queen R � 1 dollars to prepare.
c For each customer in line at the end of the minute,
a cost of h dollars is assessed (because of customer
inconvenience).
d The next minute begins.

Formulate a recursion that could be used to maximize
expected revenues less costs (including customer
inconvenience costs) incurred during the next T minutes.
Assume that initially there are no customers present.

4 At the beginning of 2004, the United States has B barrels
of oil. If x barrels of oil are consumed during a year, then

consumers earn a benefit (measured in dollars) of u(x). The
United States may spend money on oil exploration. If d
dollars are spent during a year on oil exploration, then there
is a probability p(d) that an oil field (containing 500,000
barrels of oil) will be found. Formulate a recursion that can
be used to maximize the expected discounted benefits less
exploration expenditures earned from the beginning of 2004
to the end of the year 2539.

5 I am a contestant on the popular TV show “Tired of
Fortune.” During the bonus round, I will be asked up to four
questions. For each question that is correctly answered, I
win a certain amount of money. One incorrect answer,
however, means that I lose all the money I have previously
won, and the game is over. If I elect to pass, or not answer
a question, the game is over, but I may keep what I have
already won. The amount of money I win for each correct
question and the probability that I will answer each question
correctly are shown in Table 13.

a My goal is to maximize the expected amount of
money won. Use dynamic programming to accomplish
this goal.
b Suppose that I am allowed to pass, or not answer a
question, and still go on to the next question. Now de-
termine how to maximize the amount of money won.

6 A machine in excellent condition earns $100 profit per
week, a machine in good condition earns $70 per week, and
a machine in bad condition earns $20 per week. At the
beginning of any week, a machine may be sent out for
repairs at a cost of $90. A machine that is sent out for
repairs returns in excellent condition at the beginning of the
next week. If a machine is not repaired, the condition of the
machine evolves in accordance with the Markov chain
shown in Table 14. The company wants to maximize its
expected discounted profit over an infinite horizon (b � .9).

a Use policy iteration to determine an optimal sta-
tionary policy.
b Use linear programming to detemine an optimal sta-
tionary policy.
c Perform two iterations of value iteration.

7 A country now has 10 units of capital. Each year, it may
consume any amount of the available capital and invest the
rest. Invested capital has a 50% chance of doubling and a
50% chance of losing half its value. For example, if the
country invests 6 units of capital, there is a 50% chance that
the 6 units will turn into 12 capital units and a 50% chance
that the invested capital will turn into 3 units. What strategy
should be used to maximize total expected consumption
over a four-year period?

TA B L E 13

Probability
of Correct

Question Answer Money Won

1 .6 $10,000
2 .5 $20,000
3 .4 $30,000
4 .3 $40,000

TA B L E 14

Next Week

This Week Excellent Good Bad

Excellent .7 .2 .1
Good 0 .7 .3
Bad 0 .1 .9

1050 C H A P T E R 1 9 Probabilistic Dynamic Programming

8 The Dallas Mavericks trail by two points and have the
ball with 10 seconds remaining. They must decide whether
to take a two- or a three-point shot. Assume that once the
Mavericks take their shot, time expires. The probability that
a two-point shot is successful is TWO, and the probability
that a three-point shot is successful is THREE. If the game
is tied, an overtime period will be played. Assume that there
is a .5 chance the Mavericks will win in overtime. (Note:
This problem is often used on Microsoft job interviews.)

a Give a rule based on the values of TWO and THREE
that tells Dallas what to do.
b Typical values for an NBA team are TWO � .45 and
THREE � .35. Based on this information, what strategy
should most NBA teams follow?

9 At any time, the size of a tree is 0, 1, 2, or 3. We must
decide when to harvest the tree. Each year, it costs $1 to
maintain the tree. It costs $5 to harvest a tree. The sales
price for a tree of each size is as follows:

Tree Size Sales Price
0 $20
1 $30
2 $45
3 $49

The transition probability matrix for the size of the tree is
as follows:

0 1 2 3

� �
For example, 80% of all size 0 trees begin the next year as
size 0 trees, and 20% of all size 0 trees begin the next year
as size 1 trees. Assuming the discount factor for cash flows
is .9 per year, determine an optimal harvesting strategy.

10 For $50, we can enter a raffle. We draw a certificate
containing a number 100, 200, 300, . . . , 1,000. Each
number is equally likely. At any time, we can redeem the
highest-numbered certificate we have obtained so far for the
face value of the certificate. We may enter the raffle as many
times as we wish. Assuming no discounting, what strategy
would maximize our expected profit? How does this model
relate to the problem faced by an unemployed person who
is searching for a job?

11 At the beginning of each year, an aircraft engine is in
good, fair, or poor condition. It costs $500,000 to run a
good engine for a year, $1 million to run a fair engine for a
year, and $2 million to run a poor engine for a year. A fair
engine can be overhauled for $2 million, and it immediately
becomes a good engine. A poor engine can be replaced for
$3 million, and it immediately becomes a good engine. The

0
0
.3
1

0
.1
.7
0

.2

.9
0
0

.8
0
0
0

0
1
2
3

transition probability matrix for an engine is as follows:
Good Fair Poor

� �
The discount factor for costs is .9. What strategy minimizes
expected discounted cost over an infinite horizon?

Group B

12 A syndicate of college students spends weekends
gambling in Las Vegas. They begin week 1 with W dollars.
At the beginning of each week, they may wager any amount
of their money at the gambling tables. If they wager d
dollars, then with probability p, their wealth increases by d
dollars, and with probability 1 � p, their wealth decreases
by d dollars. Their goal is to maximize their expected wealth
at the end of T weeks.

a Show that if p � �
1
2

�, the students should bet all their
money.
b Show that if p 	 �

1
2

�, the students should bet no money.
(Hint: Define ft(w) as the maximum expected wealth at
the end of week T, given that wealth is w dollars at the
beginning of week t; by working backward, find an ex-

.1

.4
1

.2

.6
0

.7
0
0

Good
Fair
Poor

pression for ft(w).)

Group C

13 You have invented a new product: the HAL DVD player.
Each of 1,000 potential customers places a different value
on this product. A consumer’s valuation is equally likely to
be any number between $0 and $1,000. It costs $100 to
produce the HAL player. During a year in which we set a
price p for the product, all customers valuing the product at
$p or more will purchase the product. Each year, we set a
price for the product. What pricing strategy will maximize
our expected profit over three years? What commonly
observed phenomenon does this problem illustrate?

R E F E R E N C E S
The following books contain elementary discussions of
Markov decision processes and probabilistic dynamic pro-
gramming:

